Skip to main content
Log in

Effects of land-use change on solute fluxes to floodplain lakes of the central Amazon

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

A time-series analysis of airborne photographs and Landsat thematic mapper (TM and ETM+) images and hydrochemical data were used to examine the effects of land-use change from 1930 to 2001 on solute inputs to Lake Calado, a floodplain lake in the central Amazon. Deforestation from slash-and-burn agricultural activities has dramatically decreased the amount of primary growth upland and flooded forests in the basin. The increasing area that is converted to agricultural plots and pasture in the Lake Calado basin has increased solute loading to the lake from upland tributaries (storm and base flow), bank seepage and overland flow, and decreased throughfall inputs. Whereas solute concentrations in stream water were generally higher in 1992 than 1930, Na+ and Cl concentrations were also considerably higher in 2001 than 1992, likely because of an increase in the number of humans and cattle in the watershed. Estimates of solute inputs to Lake Calado via throughfall indicate that the mass transfer of some major solutes in the throughfall of undisturbed flooded forests can be larger than that from a combination of all other sources in areas that do not have a strong influence from the Solimões River. Chemical gains in rain as it passed through the forest canopy occurred for most major ions and relatively large gains were observed for \({\text{PO}}_{\text{4}}^{3--} \) and Ca2+. Although often neglected in studies of tropical forest ecosystems, throughfall can be an important source of solutes to relatively undisturbed lake environments in the central Amazon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Biggs T.W., Dunne T., Domingues T.F. and Martinelli L.A. 2002. Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon basin. Wat. Resourc. Res. 38 (8): 1150, 10.1029/2001WR000271.

    Google Scholar 

  • Engle D.L. and Melack J.M. 1993. Consequences of riverine flooding for seston and the periphyton of floating meadows in an Amazon floodplain lake. Limnol. Oceanogr. 38: 1500-1520.

    Google Scholar 

  • Filoso S. 1996. Throughfall and aquatic biogeochemistry in the Anavilhanas Archipelago, Negro River, Brazil. Ph.D. Dissertation, University of California, Santa Barbara, 197 p.

    Google Scholar 

  • Filoso S. and Williams M.R. 2000. The hydrochemical influence of the Branco River on the Negro River and Anavilhanas archipelago, Amazonas, Brazil. Arch. Hydrobio. 148: 563-585.

    Google Scholar 

  • Filoso S., Williams M.R. and Melack J.M. 1997. Spatial and temporal variation in the hydrochemistry of lakes of the Anavilhanas archipelago, Negro River, Brazil. Proc. Int. Ass. Appl. Limnol. 26: 309-312.

    Google Scholar 

  • Filoso S., Williams M.R. and Melack J.M. 1999. Composition and deposition of throughfall in a flooded forest archipelago (Negro River, Brazil). Biogeochemistry 45: 169-195.

    Google Scholar 

  • Fisher T.R., Melack J.M., Robertson B., Hardy E.R. and Alves L.F. 1983. Vertical distribution of zooplankton and physiochemical conditions during a 24-hour period in an Amazon floodplain lake, Lago Calado, Brazil. Acta Amaz. 13: 475-487.

    Google Scholar 

  • Fisher T.R., Morrissey K.M., Carlson P.R., Alves L.F. and Melack J.M. 1988. Nitrate and ammonium uptake by phytoplankton in an Amazon River floodplain lake. J. Plank. Res. 10: 7-29.

    Google Scholar 

  • Franken W.K., Leopoldo P.R., Matsui E. and Ribeiro M. de N.G. 1982. Estudo da interceptação da água de chuva em cobertura florestal amazônica do tipo terra firme. Acta Amaz. 12: 327-331.

    Google Scholar 

  • Galloway J.N., Likens G.E., Keene W.C. and Miller J.M. 1982. The composition of precipitation in remote areas of the world. J. Geophys. Res. 87: 8771-8786.

    Google Scholar 

  • Gibbs R.J. 1970. Mechanisms controlling world water chemistry. Science 170:1088-1090.

    Google Scholar 

  • Hamilton L.S. and King P.N. 1983. Tropical forested watersheds hydrologic and soils response to major uses or conversions. West-view Press Inc., Boulder, CO, 168 p.

    Google Scholar 

  • Harriss R.C., Wofsy S.C., Garstang M., Browell E.V., Mollon L.C.B., McNeal R.J., Hoell J.M., Bendura R.J., Beck S.M., Navarro R.L., Riley T.J. and Snell R.L. 1988. The Amazon boundary layer experiment (ABLE-2A): dry season 1985. J. Geophys. Res. 93: 1351-1360.

    Google Scholar 

  • Harriss R.C., Wofsy S.C., Garstang M., Browell E.V., Mollon L.C.B., McNeal R.J., Hoell J.M., Bendura R.J., Beck S.M., Navarro R.L., Riley T.J. and Snell R.L. 1990. The Amazon boundary layer experiment (ABLE-2B): wet season 1985. J. Geophys. Res. 95: 16721-16736.

    Google Scholar 

  • Hess L.L., Melack J.M., Filoso S. and Wang Y. 1995. Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C Synthetic Aperture Radar. IEEE Trans. Geosci. Rem. Sens. 33: 896-904.

    Google Scholar 

  • Junk W.J. 2002. Sustainable use of the Amazon River floodplain: problems and possibilities. Aquat. Ecosyst. Health Manag. 4: 225-233.

    Google Scholar 

  • Junk W.J. and Howard-Williams C. 1984. Ecology of aquatic macrophytes in Amazonia. In: Sioli H. (ed) The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. Junk Publisher, Dordrecht, pp. 269-293.

    Google Scholar 

  • Lenz P.H., Melack J.M., Robertson B. and Hardy E.R. 1986. Ammonium and phosphate regeneration by the zooplankton of an Amazon floodplain lake. Fresh. Biol. 16: 821-830.

    Google Scholar 

  • Lesack L.F.W. 1993a. Export of nutrients and major ionic solutes from a rain forest catchment in the central Amazon basin. Wat. Resour. Res. 29: 743-578.

    Google Scholar 

  • Lesack L.F.W. 1993b. Water balance and hydrologic characteristics of a rain forest catchment in the central Amazon basin. Wat. Resour. Res. 29: 759-773.

    Google Scholar 

  • Lesack L.F.W. 1995. Seepage exchange in an Amazon floodplain lake. Limnol. Ocean. 40: 598-609.

    Google Scholar 

  • Lesack L.F.W. and Melack J.M. 1991. The deposition, composition, and potential sources of major ionic solutes in rain of the central Amazon basin. Wat. Resour. Res. 27: 2953-2978.

    Google Scholar 

  • Lesack L.F.W. and Melack J.M. 1995. Flooding hydrology and mixture dynamics of lake water derived from multiple sources in an Amazon floodplain lake. Wat. Resour. Res. 31: 329-345.

    Google Scholar 

  • Likens G.E., Bormann F.H., Johnson N.M., Fisher D.W. and Pierce R.S. 1970. Effects of forest cutting and herbicide treatments on nutrient budgets in theHubbard Brook watershed-ecosystem. Ecol. Monogr. 40: 23-47.

    Google Scholar 

  • Lindberg S.E., Lovett G.M., Richter D.D. and Johnson D.W. 1986. Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141-145.

    Google Scholar 

  • Lovett G.M. and Lindberg S.E. 1984. Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J. Appl. Ecol. 21: 1013-1027.

    Google Scholar 

  • Lloyd C.R. and Marques F° A de O. 1988. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agr. For. Meteor. 42: 63-73.

    Google Scholar 

  • Lloyd C.R., Shuttleworth W.J. and Marques F° A de O. 1988. The measurement and modeling of rainfall interception by Amazonian rainforest. Agr. For. Meteor. 43: 277-294.

    Google Scholar 

  • Neill C. and Davidson E.A. 2000. Soil carbon accumulation or loss following deforestation for pasture in the Brazilian Amazon. In: Lal R. Kimble J.M. and Stewart B.A. (eds) Global Climate Change and Tropical Ecosystems. CRC Press, Boca Raton, pp. 197-211.

    Google Scholar 

  • Neill C., Melillo J.M., Steudler P.A., Cerri C.C., de Moraes F.L., Piccolo M.C. and Brito M. 1997. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecol. Applic. 7: 1216-1225.

    Google Scholar 

  • Parker G.G. 1983. Throughfall and stemflow in the forest nutrient cycle. Adv. Ecol. Res. 13: 57-132.

    Google Scholar 

  • Revilla J.D.C. 1981. Aspéctos florísticos e fitosociológicos de floresta inundável de (igapó) Praia Grande, Rio Negro, Amazonas, Brasil. MS Thesis, Instituto Nacional de Pesquisas da Amazônia, Manaus, 129 p.

    Google Scholar 

  • Revilla J.D.C. 1991. Aspéctos florísticos e estruturais da floresta inundável (Várzea) do baixo Solimões, Amazonas, Brazil. PhD Thesis, Instituto Nacional de Pesquisas da Amazônia and Fundação Universidade do Amazônas, Manaus, 119 p.

    Google Scholar 

  • Schaefer D.A. and Reiners W.A. 1989. Throughfall chemistry and canopy processing mechanisms. In: Lindberg S.E., Page A.L. and Norton S.A. (eds) Acidic Precipitation-Advances in Environmental Science Springer-Verlag, New York, pp. 241-284. 332.

    Google Scholar 

  • Setaro F.V. and Melack J.M. 1984. Responses of phytoplankton to experimental nutrient enrichment in an Amazon floodplain lake. Limnol. Oceanogr. 28: 927-984.

    Google Scholar 

  • Sioli H. 1984. The Amazon. Monographs in Biology Vol. 56. Dr. W. Junk Publisher, The Hague.

    Google Scholar 

  • Sippel S.J., Hamilton S.K. and Melack J.M. 1992. Inundation area and morphometry of lakes on the Amazon River floodplain, Brazil, Arch. Hydrobiol. 123: 385-400.

    Google Scholar 

  • Steudler P.A., Melillo J.M., Feigl B.J., Neill C., Piccolo M.C. and Cerri C.C. 1996. Consequence of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon Basin. J. Geophys. Res. 101: 547-554.

    Google Scholar 

  • Swank W.T., Swift Jr. L.W. and Douglass J.E. 1988. Streamflow changes associated with forest cutting, species conversions, and natural disturbances. In: Swank W.T. and Crossley D.A. (eds) Forest Hydrology and Ecology at Coweeta. Springer-Verlag, pp. 297-312. 469.

  • Uhl C. and Jordan C.F. 1984. Succession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology 65: 1476-1490.

    Google Scholar 

  • Vitousek P.M., Gosz J.R., Grier C.C., Mellilo J.M., Reiners W.A. and Todd R.C. 1979. Nitrate losses from disturbed ecosystems. Science 204: 469-474.

    Google Scholar 

  • Welcomme R.L. 1979. Fisheries Ecology of Floodplain Rivers. Longman, London.

    Google Scholar 

  • Williams M.R. 1993. The effects of deforestation on the water chemistry of a small watershed in central Amazonas. M.S. Thesis, University of Maryland, 254 p.

  • Williams M.R. and Melack J.M. 1997. Solute export from forested and partially deforested catchments in the central Amazon. Biogeochemistry 38: 67-102.

    Google Scholar 

  • Williams M.R., Fisher T.R. and Melack J.M. 1997a. The composition and deposition of rain in the central Amazon, Brazil. Atmos. Env. 31: 207-217.

    Google Scholar 

  • Williams M.R., Fisher T.R. and Melack J.M. 1997b. Solute dynamics in soil water and groundwater in a central Amazon catchment undergoing deforestation. Biogeochemistry 38: 303-335.

    Google Scholar 

  • Williams M.R., Hopkinson C., Rastetter E. and Vallino J. 2003. Relationships of land use and streamwater solute concentrations in the Ipswich River basin, northeastern Massachusetts. Wat. Air Soil Poll. (submitted)

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M.R., Filoso, S. & Lefebvre, P. Effects of land-use change on solute fluxes to floodplain lakes of the central Amazon. Biogeochemistry 68, 259–275 (2004). https://doi.org/10.1023/B:BIOG.0000025746.07774.e0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOG.0000025746.07774.e0

Navigation