Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of prokaryotic transcription through arbitrary protein–protein contacts

Abstract

Many transcriptional activators in prokaryotes are known to bind near a promoter and contact RNA polymerase1–5, but it is not clear whether a protein–protein contact between an activator and RNA polymerase is enough to activate gene transcription. Here we show that contact between a DNA-bound protein and a heterologous protein domain fused to RNA polymerase can elicit transcriptional activation; moreover, the strength of this engineered protein–protein interaction determines the amount of gene activation. Our results indicate that an arbitrary interaction between a DNA-bound protein and RNA polymerase can activate transcription. We also find that when the DNA-bound 'activator' makes contact with two different components of the polymerase, the effect of these two interactions on transcription is synergistic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ishihama, A. Protein-protein communication within the transcription apparatus. J. Bacteriol. 175, 2483–2489 (1993).

    Article  CAS  Google Scholar 

  2. Ishihama, A. Role of the RNA polymerase α subunit in transcription activation. Mol. Microbiol. 6, 3283–3288 (1992).

    Article  CAS  Google Scholar 

  3. Ebright, R. H. & Busby, S. The E. coli RNA polymerase α subunit: structure and function. Curr. Opin. Genet. Dev. 5, 197–203 (1995).

    Article  CAS  Google Scholar 

  4. Busby, S. & Ebright, R. H. Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79, 743–746 (1994).

    Article  CAS  Google Scholar 

  5. Ptashne, M. A Genetic Switch: Phage λ and Higher Organisms (Cell Press and Blackwell Scientific, Cambridge, MA, 1992).

    Google Scholar 

  6. Li, M., Moyle, H. & Susskind, M. M. Target of the transcriptional activation function of phage λ cI protein. Science 263, 75–77 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Kuldell, N. & Hochschild, A. Amino acid substitutions in the – 35 recognition motif of σ70 that result in defects in phage λ repressor-stimulated transcription. J. Bacteriol. 176, 2991–2998 (1994).

    Article  CAS  Google Scholar 

  8. Sauer, R. T., Jordan, S. R. & Pabo, C. O. λ represser: a model system for understanding protein-DNA interactions and protein stability. Adv. Protein Chem. 40, 1–61 (1990).

    Article  CAS  Google Scholar 

  9. Bushman, F. D., Shang, C. & Ptashne, M. A single glutamic acid residue plays a key role in the transcriptional activation function of λ represser. Cell 58, 1163–1171 (1989).

    Article  CAS  Google Scholar 

  10. Whipple, F. W., Kuldell, N. H., Cheatham, L. A. & Hochschild, A. Specificity determinants for the interaction of λ repressor and P22 represser dimers. Genes Dev. 8, 1212–1223 (1994).

    Article  CAS  Google Scholar 

  11. Joung, J. K., Koepp, D. & Hochschild, A. Synergistic activation of transcription by bacteriophage λ cI protein and E. coli cAMP receptor protein. Science 265, 1863–1866 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Hawley, D. K. & McClure, W. R. Mechanism of action of transcription inititiation from the λPRM promoter. J. Mol. Biol. 157, 493–525 (1982).

    Article  CAS  Google Scholar 

  13. Niu, W., Kim, Y., Tau, G., Heyduk, T. & Ebright, R. H. Transcription activation at class II CAP-dependent promoters: two interactions between CAP and RNA polymerase. Cell 87, 1123–1134 (1996).

    Article  CAS  Google Scholar 

  14. Fields, S. & Song, O. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Sauer, R. T. Molecular Characterization of the Lambda Represser and its Gene cI. PhD Thesis, Harvard Univ. (1979).

    Google Scholar 

  16. Monsalve, M., Mencia, M., Salas, M. & Rojo, F. Protein p4 represses phage φ29 A2c promoter by interacting with the α subunit of Bacillus subtilis RNA polymerase. Proc. Natl Acad. Sci. USA 93, 8913–8919 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Barberis, A. et al. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81, 359–368 (1995).

    Article  CAS  Google Scholar 

  18. Chatterjee, S. & Struhl, K. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature 374, 820–822 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Klages, N. & Strubin, M. Stimulation of RNA polymerase II transcription initiaiton by recruitment of TBP in vivo. Nature 374, 822–823 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Xiao, H., Friesen, J. D. & Lis, J. T. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol. 15, 5757–5761 (1995).

    Article  CAS  Google Scholar 

  21. Farrell, S., Simkovich, N., Wu, Y., Barberis, A. & Ptashne, M. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev. 10, 2359–2367 (1996).

    Article  CAS  Google Scholar 

  22. Koleske, A. & Young, R. A. An RNA polymerase II holoenzyme responsive to activators. Nature 368, 466–469 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  Google Scholar 

  24. Backman, K. & Ptashne, M. Maximizing gene expression on a plasmid using recombination in vitro. Cell 13, 65–71 (1978).

    Article  CAS  Google Scholar 

  25. Tang, H. et al. Location, structure, and function of the target of a transcription activatpr protein. Genes Dev. 8, 3058–3067 (1994).

    Article  CAS  Google Scholar 

  26. Joung, J. K. Studies of Prokaryotic Transcriptional Activator Synergy and Dimerization Specificity. PhD Thesis, Harvard Univ. (1996).

    Google Scholar 

  27. Hochschild, A. & Ptashne, M. Interaction at a distance between λ repressers disrupts gene activation. Nature 336, 353–357 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Dove, S. L. & Dorman, C. J. The site-specific recombination system regulating expression of the type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Mol. Microbiol. 14, 975–988 (1994).

    Article  CAS  Google Scholar 

  29. Joung, J. K., Le, L. U. & Hochschild, A. Synergistic activation of transcription by Escherichia coli cAMP receptor protein. Proc. Natl Acad. Sci. USA 90, 3083–3087 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Ross, W. et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 263, 1407–1413 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dove, S., Joung, J. & Hochschild, A. Activation of prokaryotic transcription through arbitrary protein–protein contacts. Nature 386, 627–630 (1997). https://doi.org/10.1038/386627a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386627a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing