Skip to main content
Log in

An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The size and number density of precipitates formed during the early stage of precipitation of copper from Fe-1.4 at. pct Cu at 500°C was determined with the field-ion microscope (FIM). While particles of less than 50 × 10−8 cm remain invisible in the electron microscope (ETM) they are clearly resolved with the FIM; particles as small as 8 × 10−8 cm in diameter could be detected. The growth rate of the particles can be accounted for by normal bulk diffusion. At its peak strength, the alloy contains approximately 1018 particles per cu cm with an average diameter of 24 × 10−8 cm. The alloy reaches its peak strength well before precipitation is complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. W. Müller, J. A. Panitz, and S. B. McLane:Rev. Sci. Instrum., 1968, vol. 39, pp. 83–86. See also: E. W. Müller:Naturwissenschaften, 1970, vol. 57, pp. 222–30;Ber. Bunsen-Ges. Phys. Chem., 1971, vol. 75, pp. 979–87.

    Article  Google Scholar 

  2. S. S. Brenner and J. T. McKinney:Appl. Phys. Lett., 1968, vol. 13, pp. 29–32.

    Article  CAS  Google Scholar 

  3. S. S. Brenner and S. R. Goodman:Scripta Met., 1971, vol. 5, pp. 865–69.

    Article  CAS  Google Scholar 

  4. E. Hornbogen and R. C. Glenn:Trans. TMS-AIME, 1960, vol. 218, pp. 1064–70. See also: E. Hornbogen:Acta Met., 1962, vol. 10, pp. 525–33; E. Hornbogen:Trans. ASM, 1964, vol. 57, pp. 120–32; E. Hornbogen and H. P. Jung:Z. Metallk., 1964, vol. 55, pp. 691–98; E. Hornbogen, G. Lutjering, and M. Roth:Arch. Eisenheuttenw., 1966, vol. 37, pp. 523–32; E. Hornbogen and W. Meyer:Z. Metallk., 1967, vol. 58, pp. 297–305.

    CAS  Google Scholar 

  5. S. K. Lahiri, D. Chanda, L. M. Schwartz, and M. E. Fine:Trans. TMS-AIME, 1969, vol. 245, pp. 1865–68.

    CAS  Google Scholar 

  6. E. W. Müller, S. Nakamura, S. B. McLane, and O. Nishikawa:J. Appl. Phys., 1965, vol. 36, pp. 2496–503.

    Article  Google Scholar 

  7. O. Nishikawa and E. W. Müller:J. Appl. Phys., 1964, vol. 35, pp. 2806–12.

    Article  CAS  Google Scholar 

  8. K. Rendulic:Surface Sci., 1968, vol. 12, pp. 454–60.

    Article  CAS  Google Scholar 

  9. S. R. Goodman: Ph.D. Thesis, Carnegie-Mellon University, 1972.

  10. M. Drechsler and P. Wolf:Proc. IV Intern. Congr. Electron Microscopy, Berlin, 1958 vol. 1, pp. 835–48, Springer-Verlag, Berlin, 1960.

    Google Scholar 

  11. E. W. Müller:ibid., pp. 820–35.

    Google Scholar 

  12. O. Nishikawa and E. W. Müller:J. Appl. Phys., 1964, vol. 35, pp. 2806–12.

    Article  CAS  Google Scholar 

  13. E. W. Müller and T. T. Tsong:Field Ion Microscopy, American Elsevier Publishing Co., 1969.

  14. K. M. Bowkett and D. A. Smith:Field-Ion Microscopy, North Holland Publishing Co., 1970.

  15. D. M. Davies and B. Ralph:J. Iron Steel Inst., 1972, vol. 210, pp. 262–66.

    CAS  Google Scholar 

  16. S. S. Brenner:19th Field Emission Symposium Abstracts, p. 58, University of Illinois, Urbana-Champaign, Ill. 1972.

    Google Scholar 

  17. S. S. Brenner:13th Field Emission Symposium Abstracts, p. 90, Cornell University, Ithaca, N. Y., 1966.

    Google Scholar 

  18. A. Kelly and R. B. Nicholson:Prog. inMat. Sci., 1963, vol. 10, pp. 149–391.

    Google Scholar 

  19. S. D. Eshelby:Proc. Roy. Soc, 1957, vol. A241, pp. 376–96.

    Google Scholar 

  20. J. T. McKinney: Private Communication, U.S. Steel Corp., Monroeville, Pa., 1971.

  21. R. G. Faulkner and B. Ralph:Acta Met., 1972, vol. 20, pp. 703–10.

    Article  CAS  Google Scholar 

  22. G. R. Speich and R. A. Oriani:Trans. TMS-AIME, 1965, vol. 223, pp. 623–31.

    Google Scholar 

  23. C. Zener:J. Appl. Phys., 1949, vol. 20, pp. 950–53.

    Article  CAS  Google Scholar 

  24. F. S. Ham:J. Phys. Chem. Solids, 1958, vol. 6, pp. 335–51.

    Article  CAS  Google Scholar 

  25. H. B. Aaron, D. Fainstein, and G. Kotler:J. Appl. Phys., 1970, vol. 41, pp. 4404–10.

    Article  Google Scholar 

  26. G. R. Speich, J. A. Gula, and R. M. Fisher:The Electron Microprobe, pp. 525–42, John Wiley and Son, Inc., New York, 1966.

    Google Scholar 

  27. C. Wagner:Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  28. E. F. Kneller:J. Appl. Phys., 1964, vol. 35, pp. 2210–11.

    Article  CAS  Google Scholar 

  29. K. C. Russell and L. M. Brown:Acta Met., 1972, vol. 20, pp. 969–74.

    Article  CAS  Google Scholar 

  30. D. M. Schwartz and B. Ralph:Phil. Mag., 1969, vol. 19, pp. 1061–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a thesis submitted by S. R. GOODMAN to Carnegie-Mellon University, in partial fulfillment of the requirements of the Ph.D. degree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, S.R., Brenner, S.S. & Low, J.R. An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy. Metall Trans 4, 2363–2369 (1973). https://doi.org/10.1007/BF02669376

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02669376

Keywords

Navigation