Skip to main content

Advertisement

Log in

Cast-Replicated NiTiCu Foams with Superelastic Properties

  • Symposium: Physical and Mechanical Metallurgy of Shape Memory Alloys for Actuator Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni40Ti50Cu10 foams were replication cast into a porous SrF2 preform. This space holder is chemically stable in contact with liquid and solid Ni40Ti50Cu10, but can be removed by dissolution in nitric acid. A Ni40Ti50Cu10 foam with 60 pct porosity exhibits low stiffness (1 to 13 GPa) and large recoverable strains (~4 pct) during cyclical compression testing at 311 K (38 °C), within the superelastic range based on calorimetry results. This is the first time that replication casting is used to create an open foam of a NiTi-based shape-memory alloy, due to difficulties associated with the high reactivity and strong contamination tendency of the melt. Casting NiTi-based shape-memory alloy foams enable the economical production of porous actuators, energy absorbers, and biomedical implants with complex shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Duerig, A. Pelton, and D. Stockel: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 149–60.

    Google Scholar 

  2. N.B. Morgan: Mater. Sci. Eng. A, 2004, vol. 378 (1–2), pp. 16–23.

    Google Scholar 

  3. W. Cai, X.L. Meng, and L.C. Zhao: Curr. Opin. Solid State Mater. Sci., 2005, vol. 9 (6), pp. 296–302.

    Article  CAS  Google Scholar 

  4. C. Grossmann, J. Frenzel, V. Sampath, T. Depka, and G. Eggeler: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2530–44.

    Article  CAS  Google Scholar 

  5. J. Frenzel, J.A. Burow, E.J. Payton, S. Rezanka, and G. Eggeler: Adv. Eng. Mater., 2011, vol. 13 (4), pp. 256–68.

    Article  CAS  Google Scholar 

  6. J. Van Humbeeck: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 134–48.

    Google Scholar 

  7. J. Frenzel, Z. Zhang, Ch. Somsen, K. Neuking, and G. Eggeler: Acta Mater., 2007, vol. 55 (4), pp. 1331–41.

    Article  CAS  Google Scholar 

  8. Z. Zhang, J. Frenzel, K. Neuking, and G. Eggeler: Acta Mater., 2005, vol. 53 (14), pp. 3971–85.

    Article  CAS  Google Scholar 

  9. A. Bansiddhi and D.C. Dunand: Acta Biomater., 2008, vol. 4 (6), pp. 1996–2007.

    Article  CAS  Google Scholar 

  10. S.A. Shabalovskaya: Bio-Med. Mater. Eng., 2002, vol. 12, pp. 69–109.

    CAS  Google Scholar 

  11. G. Ryan, A. Pandit, and D.P. Apatsidis: Biomaterials, 2006, vol. 27 (13), pp. 2651–70.

    Article  CAS  Google Scholar 

  12. C.E. Wen, J.Y. Xiong, Y.C. Li, and P.D. Hodgson: Phys. Scripta, 2010, vol. T139, paper no. 014070, pp. 1–8.

  13. A. Bansiddhi and D.C. Dunand: Intermetallics, 2007, vol. 15 (12), pp. 1612–22.

    Article  CAS  Google Scholar 

  14. A. Bansiddhi and D.C. Dunand: J. Mater. Res., 2009, vol. 24 (6), pp. 2107–17.

    Article  CAS  Google Scholar 

  15. A. Bansiddhi and D.C. Dunand: Adv. Eng. Mater., 2011, vol. 13 (4), pp. 301–05 .

    Article  CAS  Google Scholar 

  16. M. Sugiyama, S.K. Hyun, M. Tane, and H. Nakajima: High Temp. Mater. Process., 2007, vol. 26, pp. 297–301.

    Article  CAS  Google Scholar 

  17. L.P. Lefebvre, J. Banhart, and D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10 (9), pp. 775–87.

    Article  CAS  Google Scholar 

  18. J. Banhart: Adv. Eng. Mater., 2006, vol. 8 (9), pp. 781–94.

    Article  CAS  Google Scholar 

  19. J. Frenzel, Z. Zhang, K. Neuking, and G. Eggeler: J. Alloys Compd., 2004, vol. 385 (1–2), pp. 214–23.

    Article  CAS  Google Scholar 

  20. J. Frenzel, E.P. George, A. Dlouhy, Ch. Somsen, M.F.X. Wagner, and G. Eggeler: Acta Mater., 2010, vol. 58 (9), pp. 3444–58.

    Article  CAS  Google Scholar 

  21. A.H. Brothers, R. Scheunemann, J.D. DeFouw, and D.C. Dunand: Scripta Mater., 2005, vol. 52, pp. 335–39.

    Article  CAS  Google Scholar 

  22. Y. Boonyongmaneerat and D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10 (4), pp. 379–83.

    Article  CAS  Google Scholar 

  23. M. Chmielus, X.X. Zhang, C. Witherspoon, D.C. Dunand, and P. Müllner: Nat. Mater., 2009, vol. 8 (11), pp. 863–66.

    Article  CAS  Google Scholar 

  24. F. Diologent, E. Combaz, V. Laporte, R. Goodall, L. Weber, F. Duc, and A. Mortensen: Scripta Mater., 2009, vol. 61 (4), pp. 351–54.

    Article  CAS  Google Scholar 

  25. Y. Conde, J.F. Despois, R. Goodall, A. Marmottant, L. Salvo, C. San Marchi, and A. Mortensen: Adv. Eng. Mater., 2006, vol. 8 (9), pp. 795–803.

    Article  CAS  Google Scholar 

  26. R. Zarnetta, R. Takahashi, M.L. Young, A. Savan, Y. Furuya, S. Thienhaus, B. Maaß, M. Rahim, J. Frenzel, H. Brunken, Y.S. Chu, V. Srivastava, R.D. James, I. Takeuchi, G. Eggeler, and A. Ludwig: Adv. Funct. Mater., 2010, vol. 20 (12), pp. 1917–23.

    Article  CAS  Google Scholar 

  27. A. Biscarini, B. Coluzzi, G. Mazzolai, F.M. Mazzolai, and A. Tuissi: J. Alloys Compd., 2003, vols. 356–357, pp. 669–72.

    Article  Google Scholar 

  28. F.M. Mazzolai, A. Biscarini, B. Coluzzi, G. Mazzolai, E. Villa, and A. Tuissi: Acta Mater., 2007, vol. 55 (13), pp. 4243–52.

    Article  CAS  Google Scholar 

  29. O. Mercier and K. Melton: Metall. Trans. A, 1979, vol. 10A, pp. 387–89.

    CAS  Google Scholar 

  30. K.P. Gupta: J. Phase Equilib., 2002, vol. 23 (6), pp. 541–47.

    Article  CAS  Google Scholar 

  31. J. Khalil Allafi, X. Ren, and G. Eggeler: Acta Mater., 2002, vol. 50 (4), pp. 793–803.

  32. N. Frantz-Rodriguez, A. Bosseboeuf, E. Dufour-Gergam, V. Stambouli-Séné, G. Nouet, W. Seiler, and J.-L. Lebrun: J. Micromech. Microeng., 2000, vol. 10 (2), p. 147.

    Article  CAS  Google Scholar 

  33. R.W. Cahn: Adv. Mater., 1991, vol. 3 (12), pp. 628–29.

    Google Scholar 

  34. J. Mentz, J. Frenzel, M.F.-X. Wagner, K. Neuking, G. Eggeler, H.P. Buchkremer, and D. Stoever: Mater. Sci. Eng. A, 2008, vol. 491, pp. 270–78.

    Article  Google Scholar 

  35. Y. Matsumoto, A.H. Brothers, S.R. Stock, and D.C. Dunand: Mater. Sci. Eng. A, 2007, vol. 447 (1–2), pp. 150–57.

    Google Scholar 

  36. A.J. Neurohr and D.C. Dunand: Acta Biomater., 2011, vol. 7 (4), pp. 1862–72.

    Article  CAS  Google Scholar 

  37. A.J. Neurohr and D.C. Dunand: Acta Mater., 2011, vol. 59 (11), pp. 4616–30.

    Article  CAS  Google Scholar 

  38. A. Yawny, M. Sade, and G. Eggeler: Z. Metallkd., 2005, vol. 96, pp. 608–18.

    CAS  Google Scholar 

  39. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, United Kingdom, 1997.

    Google Scholar 

  40. D. Dunand, D. Mari, M. Bourke, and J. Roberts: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2820–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) through Subproject C7 of the Collaborative Research Center SFB 459 (with additional funding from the German state of North Rhine-Westphalia and Ruhr-Universität Bochum). MLY also acknowledges support by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus L. Young.

Additional information

Manuscript submitted May 19, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, M.L., DeFouw, J.D., Frenzel, J. et al. Cast-Replicated NiTiCu Foams with Superelastic Properties. Metall Mater Trans A 43, 2939–2944 (2012). https://doi.org/10.1007/s11661-011-1060-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1060-x

Keywords

Navigation