Skip to main content
Log in

The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids

  • Transformations
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The elastic strain energy of coherent ellipsoidal precipitates (ellipsoids of revolution) in anisotropic crystalline solids has been calculated as a function of ellipsoid aspect ratio using the method of Eshelby. When the precipitate is eithermuch softer or harder, elastically, than the matrix, the results are similar to those previously obtained using isotropic elasticity. When this condition is not met, however, anisotropic elasticity can yield quite different results which vary markedly with the orientation relationship between precipitate and matrix. When the precipitate has a non-cubic crystal structure, the elastic strain energy often passes through a maximum or a minimum at shapes which are neither thin discs nor spheres. During this study, the isotropic elasticity result that the strain energy associated with a disc-shaped precipitate is independent of the matrix elastic constants was also shown to hold under the conditions of anisotropic elasticity, and in such circumstances it depends only on the elastic properties of the precipitate in the direction of the principal directions of the disc. Incorporation of the anisotropic elastic strain energy into the calculation of ΔG *, the free energy of activation for the formation of a critical nucleus for the basic case of homogeneous nucleation with boundary-orientation independent interfacial energy, showed that the ratio of the strain energy to the volume free energy change must usually be somewhat larger than 3/4 in order to cause the shape of the critical nucleus to differ from that of a sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Eshelby:Proc. Roy. Soc., 1957, vol. A241, p. 376.

    Article  Google Scholar 

  2. J. D. Eshelby:Proc. Roy. Soc., 1959, vol. A252, p. 561.

    Article  Google Scholar 

  3. J. D. Eshelby:Progress in Solid Mechanics, 1961, vol. 2, p. 89.

    Google Scholar 

  4. L. J. Walpole:Proc. Roy. Soc., 1967, vol. A300, p. 270.

    Article  Google Scholar 

  5. J. R. Willis:The Solution of Asymmetric Problems of Elasticity of Fourier Transforms, Adams Prize Essay, University of Cambridge, 1970, unpublished.

  6. N. Kinoshita and T. Mura:Phys. Status Solidi, 1971, vol. 25, p. 759.

    Google Scholar 

  7. R. J. Asaro and D. M. Barnett:J. Mech. Phys. Solids, 1975, vol. 23, p. 77.

    Article  Google Scholar 

  8. K. Robinson:J. Appl. Phys., 1951, vol. 22, p. 1945.

    Article  Google Scholar 

  9. D. M. Barnett, J. K. Lee, H. I. Aaronson, and K. C. Russell:Scr. Met., 1974, vol. 8, p. 1447.

    Article  Google Scholar 

  10. M. Shibata and K. Ono:Acta Met., 1975, vol. 23, p. 587.

    Article  CAS  Google Scholar 

  11. J. A. Wert:Acta Met., 1976, vol. 24, p. 65.

    Article  CAS  Google Scholar 

  12. A. G. Khachaturyan:Sov. Phys. Solid State, 1967, vol. 8, p. 2163.

    Google Scholar 

  13. H. Margenau and G. M. Murphy:The Mathematics of Physics and Chemistry, p. 462, D. Van Nostrand, New York, N.Y., 1943.

    Google Scholar 

  14. J. P. Hirth and J. Lothe:Theory of Dislocations, p. 761, McGraw-Hill, New York, N.Y., 1968.

    Google Scholar 

  15. A. Kelly and R. B. Nicholson:Progr. Mater. Sci., 1963, vol. 10, p. 149.

    Google Scholar 

  16. F. Lászlo:J. Iron Steel Inst., 1950, vol. 164, p. 5.

    Google Scholar 

  17. D. M. Barnett:Scr. Met., 1971, vol. 5, p. 261.

    Article  CAS  Google Scholar 

  18. T. Mura and S. C. Lin:J. Appl. Mech., 1974, vol. 41, p. 209.

    Google Scholar 

  19. V. A. Philips and L. E. Tanner:Acta Met., 1973, vol. 21, p. 441.

    Article  Google Scholar 

  20. G. Simmons and H. Wang:Single Crystal Elastic Constants and Calculated Aggregate Properties, M.I.T. Press, 1971.

  21. J. F. Nye:Physical Properties of Crystals, p. 282, Oxford University Press, London, 1957.

    Google Scholar 

  22. J. H. Hollomon and D. Turnbull:Progr. Mater. Sci., 1953, vol. 4, p. 333.

    CAS  Google Scholar 

  23. F. R. N. Nabarro:Proc. Roy. Soc., 1940, vol. A175, p. 519.

    Article  Google Scholar 

  24. E. Kröner:Acta Met., 1954, vol. 2, p. 302.

    Article  Google Scholar 

  25. K. C. Russell:Scr. Met., 1969, vol. 3, p. 313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.K., Barnett, D.M. & Aaronson, H.I. The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids. Metall Trans A 8, 963–970 (1977). https://doi.org/10.1007/BF02661580

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02661580

Keywords

Navigation