Skip to main content
Log in

Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: Ideal plastic behavior

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Assuming ideal plastic behavior for an isotropic matrix containing a misfitting spherical precipitate, the total amount of work expended during elasto-plastic deformation is calculated and compared with the total strain energy in the corresponding pure elastic state. For precipitates larger than one micron (µm), the effective yield stress is taken as the macroscopic yield stress while for smaller precipitates, size-dependent yield stresses are obtained from the Ashby-Johnson model. In the case of coherent submicron precipitates, the effective yield stress becomes the theoretical yield strength and thus plastic relaxation is not possible unless the transformation stress is extremely large. For incoherent submicron precipitates, the effective yield stress is approximately inversely proportional to the precipitate radius,r. Hence plastic relaxation again is not possible whenr < 10 nm, but whenr ≃100 nm the strain energy can decrease by 10 ∼ 40 pct at a misfit of 3 pct. For supra-micron particles, however, the ratio of the effective yield stress to the shear modulus becomes 10−3 or less, and plastic relaxation can reduce the strain energy by factors of 3 to 15 at misfits of 1 to 3 pct. Under this circumstance, the plastic zone becomes wide, its radius ranging from 3 to 5r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

spherical precipitate radius

e] r :

radial strain component

e] pr :

radial plastic strain component

e] θ :

tangential strain component

e] pθ :

tangential plastic strain component

K :

bulk modulus of the matrix phase

K * :

bulk modulus of the precipitate phase

r p :

plastic zone radius

u :

radial displacement

α :

equal to (l +v)/3(1-v)

β :

constrained displacement parameter

γ :

equal toK */K

ε:

misfit parameter

μ:

shear modulus of the matrix phase

μ* :

shear modulus of the precipitate phase

ν :

Poisson’s ratio of the matrix phase

ν*:

Poisson’s ratio of the precipitate phase

σe :

equivalent stress

σr :

radial stress component

σy :

yield stress of the matrix phase

σθ :

tangential stress component

References

  1. K. R. Kinsman, J. W. Sprys, and R. J. Asaro:Acta Metall., 1975, vol. 23, p. 1431.

    Article  CAS  Google Scholar 

  2. J. M. Rigsbee and P. J. VanderArend: Formable HSLA and Dual-Phase Steels, A. T. Davenport, ed., p. 58, TMS-AIME, New York, NY.

  3. Y. Y. Earmme, W. C. Johnson, and J. K. Lee: unpublished research, Michigan Technological University, Houghton, MI, 1980.

  4. M. F. Ashby and L. Johnson:Philos. Mag., 1969, vol. 20, p. 1009.

    CAS  Google Scholar 

  5. J. W. Christian:The Theory of Transformations in Metals and Alloys—Part I, 2nd ed., p. 200, Pergamon Press, Oxford, 1975.

    Google Scholar 

  6. R. Hill:The Mathematical Theory of Plasticity, p. 97, Oxford University Press, London, 1950.

    Google Scholar 

  7. A. Mendelson:Plasticity—Theory and Application, p. 135, MacMillan, New York, 1968.

    Google Scholar 

  8. J. D. Eshelby:Prog. Solid Mech., 1961, vol. 2, p. 89.

    Google Scholar 

  9. D. M. Barnett:Scr. Metall., 1971, vol. 5, p. 261.

    Article  CAS  Google Scholar 

  10. P. W. Bridgman:J. Appl. Phys., 1947, vol. 18, p. 246.

    Article  CAS  Google Scholar 

  11. G. E. Dieter:Mechanical Metallurgy, p. 58, McGraw-Hill, New York, 1961.

    Google Scholar 

  12. G. C. Weatherly:Met. Sci., 1968, vol. 2, p. 237.

    Article  CAS  Google Scholar 

  13. M. F. Ashby, S. H. Gelles, and L. E. Tanner:Philos. Mag., 1969, vol. 19, p. 757.

    CAS  Google Scholar 

  14. L. M. Brown, G. R. Woolhouse, and U. Valdré:Philos. Mag., 1968, vol. 17, p. 781.

    CAS  Google Scholar 

  15. L. M. Brown and G. R. Woolhouse:Philos. Mag., 1970, vol. 21, p. 329.

    CAS  Google Scholar 

  16. J. W. Matthews and S. Mader:Scr. Metall., 1972, vol. 6, p. 1195.

    Article  CAS  Google Scholar 

  17. K. Jagannadham and E. G. Ramachandran:J. Appl. Phys., 1974, vol. 45, p. 2406.

    Article  CAS  Google Scholar 

  18. F. A. McClintock and A. S. Argon:Mechanical Behavior of Materials, p. 118, Addison-Wesley, Reading, 1966.

    Google Scholar 

  19. G. C. Weatherly:Philos. Mag., 1968, vol. 17, p. 791.

    Google Scholar 

  20. H. Brooks:Metal Interfaces, p. 20, ASM, Metals Park, OH, 1952.

    Google Scholar 

  21. R. M. Rose, D. P. Ferriss, and J. Wulff:Trans. TMS-AIME, 1962, vol. 224, p. 981.

    CAS  Google Scholar 

  22. V. A. Philips:Trans. TMS-AIME, 1964, vol. 230, p. 967.

    Google Scholar 

  23. K. E. Easterling:Acta Polytech. Scand., 1967, chapt. 61.

  24. J. K. Lee and W. C. Johnson:Scr. Metall., 1977, vol. 11, p. 477.

    Article  Google Scholar 

  25. A. Kelly and R. B. Nicholson:Prog. Mater. Sci., 1963, vol. 10, p. 149.

    Google Scholar 

  26. H. I. Aaronson, J. K. Lee, and K. C. Russell:Precipitation Processes in Solids, p. 31, K. C. Russell and H. I. Aaronson, eds., TMS-AIME, New York, NY, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.K., Earmme, Y.Y., Aaronson, H.I. et al. Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: Ideal plastic behavior. Metall Trans A 11, 1837–1847 (1980). https://doi.org/10.1007/BF02655099

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655099

Keywords

Navigation