Skip to main content
Log in

The use of 3-D atom-probe tomography to study nickel-based superalloys

  • Research Summary
  • 3-D Characterization: Methods and Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Recent technological advances in the design and fabrication of atom-probe tomographs and their commercialization are revolutionizing our ability to determine, on a sub-nanometer scale (atomic scale), the chemical identities of atoms in a nanostructure and to reconstruct this information in three dimensions. Thus, it is now possible to obtain data sets containing several hundred million atoms in a few hours, using either electrical or laser (femtosecond or picosecond) pulsing, and to reconstruct crystalline lattices using sophisticated software programs. Detailed quantitative results of the application of atom-probe tomography to study the kinetic pathways for precipitation in model nickel-based superalloys, Ni−Al−Cr and Ni−Al−Cr−Re, are presented as illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Surf. Interface Anal., 36 (5/6) (2004), pp. 365–605.

  2. M. Jacoby,Chemical & Engineering News, 83 (48) (2005), p. 13.

    Google Scholar 

  3. E.W. Müller,Z. Physik, 131 (1951), p. 136.

    Article  Google Scholar 

  4. E.W. Müller,Ergeb. Exakten Naturwiss., 27 (1953), p. 290.

    Article  Google Scholar 

  5. E.W. Müller and T.T. Tsong,Field Ion Microscopy (New York: American Elsevier Publishing Company, Inc., 1969).

    Google Scholar 

  6. J.R. Oppenheimer,Phys. Rev., 31 (1928), p. 67.

    Google Scholar 

  7. M.G. Inghram and R. Gomer,J. Chem. Phys., 22 (1954), p. 1279.

    Article  CAS  Google Scholar 

  8. M.G. Inghram and R. Gomer,Z. Naturforsch., 10a (1955), p. 863.

    CAS  Google Scholar 

  9. E.W. Müller and K. Bahadur,Phys. Rev., 102 (1956), p. 624.

    Article  Google Scholar 

  10. E.W. Müller and K. Bahadur,Phys. Rev., 99 (1955), p. 1651.

    Google Scholar 

  11. R. Gomer,Field Emission and Field Ionization (Cambridge, MA: Harvard University Press, 1961), Chap. 3, pp. 64–102.

    Google Scholar 

  12. E.W. Müller,Phys. Rev., 102 (1956), p. 618.

    Article  Google Scholar 

  13. R. Gomer,J. Chem. Phys., 31 (1959), p. 341.

    Article  CAS  Google Scholar 

  14. R. Gomer and L.W. Swanson,J. Chem. Phys., 38 (1963), p. 1613.

    Article  CAS  Google Scholar 

  15. D.G. Brandon,Surface Science, 3 (1965), p. 1.

    Article  Google Scholar 

  16. J.J. Hren and S. Ranganathan, editors,Field-Ion Microscopy (New York: Plenum Press, 1968).

    Google Scholar 

  17. D.N. Seidman,J. Phys. F: Metal Physics, 3 (1973), p. 3.

    Article  Google Scholar 

  18. D.N. Seidman,Surface Science, 70 (1978), p. 532.

    Article  CAS  Google Scholar 

  19. D.N. Seidman, R.S. Averback, and R. Benedek,Phys. Status Solidi. (b), 144 (1987), p. 85.

    Article  CAS  Google Scholar 

  20. G. Ehrlich and F.G. Hudda,J. Chem. Phys., 35 (1961), p. 1421.

    Article  CAS  Google Scholar 

  21. G. Ehrlich and F.G. Hudda,J. Chem. Phys., 44 (1966), p. 1039.

    Article  CAS  Google Scholar 

  22. G. Ehrlich,J. Vac. Sci. Tech., 17 (1980), p. 1.

    Article  Google Scholar 

  23. T.T. Tsong,Prog. Suface Sci., 10 (1980), p. 165.

    Article  CAS  Google Scholar 

  24. E.W. Müller, J.A. Panitz, and S.B. McLane,Rev. Sci. Instrum., 39 (1968), p. 83.

    Article  Google Scholar 

  25. T.T. Tsong,Atom-Probe Field-Ion Microscopy (Cambridge, MA: Cambridge University Press, 1990).

    Google Scholar 

  26. J.A. Panitz,Rev. Sci. Instrum., 44 (1973), p. 1034.

    Article  CAS  Google Scholar 

  27. J.A. Panitz, “Field-Desorption Spectrometer”, U.S. patent 3,868,507 (1975).

  28. G.L. Kellogg,Rev. Sci. Instrum., 58 (1987), p. 38.

    Article  CAS  Google Scholar 

  29. A. Cerezo, T.J. Godfrey, and G.D.W. Smith,Rev. Sci. Instrum., 59 (1988), p. 862.

    Article  Google Scholar 

  30. M.K. Miller et al.,Atom Probe Field Ion Microscopy (Oxford, U.K.: Oxford University Press, 1996).

    Google Scholar 

  31. D. Blavette et al.,Rev. Sci. Instrum., 64 (1993), p. 2911.

    Article  CAS  Google Scholar 

  32. A. Cerezo et al.,Appl. Surf. Sci., 76/77 (1994), p. 374.

    Article  Google Scholar 

  33. M.K. Miller,Atom Probe Tomography: Analysis at the Atomic Level (New York: Kluwer Academic/Plenum Publishers, 2000).

    Google Scholar 

  34. T.F. Kelly et al.,Ultramicroscopy, 62 (1996), p. 29.

    Article  CAS  Google Scholar 

  35. T.F. Kelly and D.J. Larson,Materials Characterization, 44 (2000), p. 59.

    Article  CAS  Google Scholar 

  36. A.A. Gribb and T.F. Kelly,Advan. Mater. & Proc., 162 (2) (2004), p. 31.

    CAS  Google Scholar 

  37. S.S.A. Gerstl et al.,Advan. Mater. & Proc., 162 (10) (2004), p. 31.

    CAS  Google Scholar 

  38. K. Thompson et al.,J. Vac. Sci. Technol. B, 24 (1) (2006), p. 421.

    Article  CAS  Google Scholar 

  39. O. Nishikawa and M. Kimoto,Appl. Surf. Sci., 76 (1–4) (1994), p. 424.

    Article  Google Scholar 

  40. B. Gault et al.,Appl. Phys. Lett., 86 (2005), p. 094101.

    Article  CAS  Google Scholar 

  41. A. Cerezo, G.D.W. Smith, and P.H. Clifton,Appl. Phys. Lett., 88 (2006), p. 154103.

    Article  CAS  Google Scholar 

  42. C.K. Sudbrack et al.,Acta Mater., 54 (12) (2006), pp. 3199–3210.

    Article  CAS  Google Scholar 

  43. C.K. Sudbrack, R.D. Noebe, and D.N. Seidman,Phys. Rev. B, 73 (2006), p. 212101.

    Article  CAS  Google Scholar 

  44. C.K. Sudbrack, R.D. Noebe, and D.N. Seidman,Acta Mater. (in press).

  45. H. Wendt and P. Haasen,Acta Metall., 31 (1983), p. 1649.

    Article  CAS  Google Scholar 

  46. S.Q. Xiao and P. Haasen,Acta Metall., 39 (1991), p. 651.

    Article  CAS  Google Scholar 

  47. N. Wanderka and U. Glatzel,Mater. Sci. Eng. A, 203 (1995), p. 69.

    Article  Google Scholar 

  48. P. Staron and R. Kampmann,Acta Mater., 48 (2000), p. 701.

    Article  CAS  Google Scholar 

  49. C. Schmuck et al.,Phil. Mag. A, 76 (1997), p. 527.

    Article  CAS  Google Scholar 

  50. C. Pareige et al.,Acta Mater., 47 (1999), p. 1889.

    Article  CAS  Google Scholar 

  51. C.K. Sudbrack (Ph.D. thesis, Northwestern University, 2004).

  52. K.E. Yoon (Ph.D. thesis, Northwestern University, 2004).

  53. C.K. Sudbrack et al.,Acta Mater., 54 (2006), pp. 3199–3210.

    Article  CAS  Google Scholar 

  54. C.K. Sudbrack et al.,TMS Letters, 1 (2) (2004), pp. 25–26.

    CAS  Google Scholar 

  55. A. Umantsev and G.B. Olson,Scr. Metall., 29 (1993), p. 905.

    Google Scholar 

  56. C.J. Kuehmann and P.W. Voorhees,Metall. Mater. Trans. A, 27A (1996), p. 937.

    Article  CAS  Google Scholar 

  57. E.A. Marquis and D.N. Seidman,Acta Mater., 53 (2005), p. 4259.

    Article  CAS  Google Scholar 

  58. K.E. Yoon, R.D. Noebe, and D.N. Seidman, accepted for publication inActa Mater. (2006).

  59. D.L. Anton and F.D. Lemkey,Fifth International Symposium on Superalloys, ed. M. Gell et al. (Warrendale, PA: The Metallurgical Society of AIME, 1984), p. 601.

    Google Scholar 

  60. A.F. Giamei and D.L. Anton,Met. Trans. A, 16A (1985), p. 1997.

    Article  CAS  Google Scholar 

  61. C.K. Sudbrack et al.,Microsc. Microanal., 10 (2004), pp. 355–365.

    Article  CAS  Google Scholar 

  62. K.E. Yoon, R.D. Noebe, and D.N. Seidman,TMS Letters, 1 (2) (2004), pp. 27–28.

    CAS  Google Scholar 

  63. D. Isheim et al.,Solid-Solid Phase Transformations in Inorganic Materials 2005, ed. J.M. Howe et al. (Warrendale, PA: TMS, 2005), Vol. 2, pp. 309–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editor's Note: Alloy compositions are given in atomic percent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidman, D.N., Sudbrack, C.K. & Yoon, K.E. The use of 3-D atom-probe tomography to study nickel-based superalloys. JOM 58, 34–39 (2006). https://doi.org/10.1007/BF02748493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02748493

Keywords

Navigation