Skip to main content
Log in

Energy Classification of Acoustic Events Using the Coda of a Signal

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

A new energy classification method is proposed for acoustic events recorded in laboratory experiments on rock destruction. The method analyzes the coda waves of acoustic emission (AE) events. Coda waves are considered as reverberation of the acoustic field in the test sample. The new classification was tested on two experiments carried out on different rocks: granites of the Voronezh massif and Berea sandstone, on an INOVA-1000 controlled hydraulic press at the Borok Geophysical Observatory (GO), Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (IPE RAS). Comparison of the new classification with the one used at Borok GO showed that both methods give well consistent results in the middle range of energies of AE events. For strong events with the saturated initial parts of the signals due to the limitations of the recording equipment, the new technique demonstrated better results, leading to energy estimates of such events from the undistorted coda of the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abubakirov, I.R. and Gusev, A.A., Estimation of scattering properties of lithosphere of Kamchatka based on Monte-Carlo simulation of record envelope of a near earthquake, Phys. Earth Planet. Inter., 1990, vol. 64, no. 1, pp. 52–67.  https://doi.org/10.1016/0031-9201(90)90005-I

    Article  Google Scholar 

  2. Aki, K., Maximum likelihood estimate of b in the formula log N = a - bM and its confidence limits, Bull. Earthquake Res. Inst., 1965, vol. 43, pp. 237–239.

    Google Scholar 

  3. Aki, K. and Chouet, B., Origin of coda waves: source, attenuation, and scattering effects, J. Geophys. Res., 1975, vol. 80, no. 23, pp. 3322–3342.  https://doi.org/10.1029/JB080i023p03322

    Article  Google Scholar 

  4. Choy, G.L. and Boatwright, J.L., Global patterns of radiated seismic energy and apparent stress, J. Geophys. Res.: Solid Earth, 1995, vol. 100, no. B9, pp. 18205–18228.  https://doi.org/10.1029/95JB01969

    Article  Google Scholar 

  5. Farin, M., Mangeney, A., De Rosny, J., Toussaint, R., Sainte-Marie, J., and Shapiro, N.M., Experimental validation of theoretical methods to estimate the energy radiated by elastic waves during an impact, J. Sound Vib., 2016, vol. 362, pp. 176–202.  https://doi.org/10.1016/j.jsv.2015.10.003

    Article  Google Scholar 

  6. Gusev, A.A. and Lemzikov, V.K., Properties of scattered elastic waves in the lithosphere of Kamchatka: parameters and temporal variations, Tectonophysics, 1985, vol. 112, nos. 1–4, pp. 137–153.  https://doi.org/10.1016/0040-1951(85)90177-5

    Article  Google Scholar 

  7. Gutenberg, B. and Richter, C.F., Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 1944, vol. 34, no. 4, pp. 185–188.  https://doi.org/10.1785/BSSA0340040185

    Article  Google Scholar 

  8. Gutenberg, B. and Richter, C.F., Earthquake magnitude, intensity, energy and acceleration (Second paper), Bull. Seismol. Soc. Am., 1956, vol. 46, no. 2, pp. 105–145.  https://doi.org/10.1785/BSSA0460020105

    Article  Google Scholar 

  9. Hanks, T.C. and Kanamori, H., A moment magnitude scale, J. Geophys. Res.: Solid Earth, 1979, vol. 84, no. B5, pp. 2348–2350.  https://doi.org/10.1029/JB084iB05p02348

    Article  Google Scholar 

  10. Kanamori, H., The energy release in great earthquakes, J. Geophys. Res., 1977, vol. 82, no. 20, pp. 2981–2987.  https://doi.org/10.1029/JB082i020p02981

    Article  Google Scholar 

  11. Kanev, N., Sound decay in a rectangular room with specular and diffuse reflecting surfaces, Proc. of Forum Acusticum, Allborg, Denmark, 2011, European Acoustics Association, 2011, pp. 935–1940.

  12. Lemzikov, V.K. and Gusev, A.A., Energy classification of near Kamchatka earthquakes by the level of coda waves, Vulkanol. Seismol., 1989, no. 4, pp. 83–97.

  13. Lockner, D., Byerlee, J.D., Kuksenko, V., Ponomarev, A., and Sidorin, A., Quasi-static fault growth and shear fracture energy in granite, Nature, 1991, vol. 350, no. 6313, pp. 39–42.  https://doi.org/10.1038/350039a0

    Article  Google Scholar 

  14. Mayeda, K. and Walter, W.R., Moment, energy, stress drop, and source spectra of western united states earthquakes from regional coda envelopes, J. Geophys. Res.: Solid Earth, 1996, vol. 101, no. B5, pp. 11195– 11208.  https://doi.org/10.1029/96JB00112

    Article  Google Scholar 

  15. Mayeda, K., Hofstetter, A., O’Boyle, J.L., and Walter, W.R., Stable and transportable regional magnitudes based on coda-derived moment-rate spectra, Bull. Seismol. Soc. Am., 2003, vol. 93, no. 1, pp. 224–239.  https://doi.org/10.1785/0120020020

    Article  Google Scholar 

  16. Patonin, A.V., Ponomarev, A.V., and Smirnov, V.B., A laboratory instrumental complex for studying the physics of the destruction of rocks, Seism. Instrum., 2014, vol. 50, no. 1, pp. 9–19.  https://doi.org/10.3103/S0747923914010046

    Article  Google Scholar 

  17. Patonin, A.V., Shikhova, N.M., Ponomarev, A.V., and Smirnov, V.B., A modular system for continuous recording of acoustic emission for laboratory studies of rock destruction processes, Seism. Instrum., 2019, vol. 55, no. 3, pp. 313–326.  https://doi.org/10.3103/S0747923919030101

    Article  Google Scholar 

  18. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., Scikit-learn: machine learning in python, J. Mach. Learn. Res., 2011, vol. 12, no. 85, pp. 2825–2830.

    Google Scholar 

  19. Rautian, T.G., Energy of earthquakes, Metody detal’nogo izucheniya seismichnosti (Tr. Inst. Fiz. Zemli Akad. Nauk SSSR, No. 9 (176)) (Methods of detailed study of seismicity), Moscow: Inst. Fiz. Zemli Akad. Nauk SSSR, 1960, pp. 75–114.

  20. Rautian, T.G., On the determination of earthquake energy at a distance up to 3000 km, Eksperimental’naya seismika (Tr. Inst. Fiz. Zemli Akad. Nauk SSSR, No. 32 (199)) (Experimental Seismology), Moscow: Nauka, 1964, pp. 88–93.

  21. Rautian, T.G. and Khalturin, V.I., The use of the coda for determination of the earthquake source spectrum, Bull. Seismol. Soc. Am., 1978, vol. 68, no. 4, pp. 923–948.  https://doi.org/10.1785/BSSA0680040923

    Article  Google Scholar 

  22. Shevchenko, Yu.V. and Yakovenko, V.V., The coda-based earthquake energy class, J. Volcanol. Seismol., 2020, vol. 14, no. 2, pp. 127–135.  https://doi.org/10.1134/S0742046320020074

    Article  Google Scholar 

  23. Smirnov, V.B., Ponomarev, A.V., and Zav’yalov, A.D., Structure of acoustic mode in rock samples and seismic mode, Fiz. Zemli, 1995, no. 1, pp. 38–58.

  24. Smirnov, V.B. and Ponomarev, A.V., Fizika perekhodnykh rezhimov seismichnosti (Physics of the Transient Modes of Seismicity), Moscow: RAN, 2020.

  25. Weaver, R.L., Diffuse field decay rates for material characterization, Solid Mechanics Research for Quantitative Non-Destructive Evaluation, Achenbach, J.D. and Rajapakse, Y., Eds., Dordrecht: Springer, 1987, pp. 425–434.  https://doi.org/10.1007/978-94-009-3523-5_27

    Book  Google Scholar 

  26. Weaver, R.L., Diffuse waves in finite plates, J. Sound Vib., 1984, vol. 94, no. 3, pp. 319–335. https://doi.org/10.1016/S0022-460X(84)80014-0

    Article  Google Scholar 

  27. Zang, A., Wagner, F.C., Stanchits, S., Dresen, G., Andresen, R., and Haidekker, M.A., Source analysis of acoustic emissions in aue granite cores under symmetric and asymmetric compressive loads, Geophys. J. Int., 1998, vol. 135, no. 3, pp. 1113–1130. https://doi.org/10.1046/j.1365-246X.1998.00706.x

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental part of the research was carried out on equipment of the Shared Use Center of IPE RAS “Petrophysics, Geomechanics, and Paleomagnetism.”

Funding

This study was supported by the Ministry of Education and Science (grant no. 075-15-2021-628, Geophysical research, monitoring, and prediction of the development of destructive geodynamic processes in the Far East of the Russian Federation) and the European Research Council (ERC grant no. 787399-SEISMAZE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Kartseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartseva, T.I., Shapiro, N.M., Patonin, A.V. et al. Energy Classification of Acoustic Events Using the Coda of a Signal. Seism. Instr. 58, 18–25 (2022). https://doi.org/10.3103/S0747923922010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922010054

Keywords:

Navigation