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A b s t r a c t. Meteorological time series are used in model-
ling agrophysical processes of the soil-plant-atmosphere system 
which determine plant growth and yield. Additionally, long-
term meteorological series are used in climate change scenarios. 
Such studies often require forecasting or projection of meteoro-
logical variables, eg the projection of occurrence of the extreme 
events. The aim of the article was to determine the most suitable 
exponential smoothing models to generate forecast using data 
on air temperature, wind speed, and precipitation time series in 
Jokioinen (Finland), Dikopshof (Germany), Lleida (Spain), and 
Lublin (Poland). These series exhibit regular additive seasonality 
or non-seasonality without any trend, which is confirmed by their 
autocorrelation functions and partial autocorrelation functions. 
The most suitable models were indicated by the smallest mean 
absolute error and the smallest root mean squared error. 

K e y w o r d s: exponential smoothing, meteorological time 
series, statistical forecasting,

INTRODUCTION

Meteorological time series are an important source of 
information for agricultural planning. Basically, every farm 
operation and the process of plant growth and develop-
ment as well as the yield of a crop are strongly affected by 
weather conditions (Porter and Semenov, 2005; Pirttioja et 
al., 2015). Therefore, meteorological time series are essen-
tial for crop modelling while forecasting of meteorological 
quantities is indispensable for scheduling agrotechnical 
measures such as fertilizer application (Asseng et al., 2012), 
irrigation (Magno et al., 2014), harvesting (Toscano et al., 
2014; Trnka et al., 2014). Modelling and forecasting of 
meteorological time series improve our understanding of 
the variation of climatic conditions at varying scales in 
order to assess the effects of climate change on crop pro-

duction (Smith et al., 2007). For instance, forecasts can be 
used to assess or to anticipate potentially hazardous weath-
er extremes such as frosts, droughts, high winds (Schlenker 
and Roberts, 2006).

Two distinct approaches exist in forecasting and projec-
tion of meteorological elements: dynamical-physical models 
based on the laws of physics, including global circulation 
models (GCMs) used for long-term climate projections, 
and statistical models estimated directly from observa-
tions that are used for short-term predictions (McSharry, 
2011). The first group of models facilitates projection of the 
effects of climate change. However, these models are based 
on understanding the interactions between mass and ener-
gy exchange between oceans, atmosphere, and biosphere, 
which are still not sufficiently acknowledged. On the other 
hand, the quality of forecasts based on statistical models 
strongly depends on the extent to which the future resem-
bles the past. Representative historical data are therefore 
crucial for proper construction of such models.

Key meteorological time series are air temperature, humi- 
dity and pressure, wind speed, precipitation, and solar radia- 
tion, which are automatically measured within meteorolo- 
gical stations with relatively high frequency and accuracy. 
Long-term meteorological records from around the world 
are available nowadays, giving a good background for test-
ing various statistical forecasting methods that try to build 
a model of the process that is to be predicted. While the 
idea of forecasting is to use an elaborated model on the va- 
lues of the series to predict future ones, the meteorological 
forecasting techniques further depend on the time scale in 
question and the type of the series (Baranowski et al., 2015; 
Meehl et al., 2009; Smith et al., 2007). 
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Methods used in statistical forecasting of meteoro-
logical time series include analyses of simple exponential 
smoothing, random walk, moving average, autoregressive 
integrated moving average (ARIMA), and artificial intel-
ligence techniques such as Fuzzy Logic, Multi-Layered 
Perceptrons, Radial Basis Functions, Logistic Regression, 
and Recurrent Neural Networks (Bilgili, 2007; Chan et 
al., 2006; Dong et al., 2013; Ghiassi et al., 2005; Reikard, 
2009). Additionally, the hybrids of different methods are 
used to improve the forecasting accuracy. Although some 
of these methods represent a very sophisticated level of 
complexity, it was shown during model comparisons that 
statistically sophisticated or complex methods did not ne- 
cessarily provide more accurate forecasts than simpler ones 
(Makridakis and Hibon, 2000). 

The exponential smoothing methods play a special role 
in forecasting of meteorological time series and they are 
still being developed and improved (Gardner, 2006). A total 
of fifteen methods can be distinguished as the main frame-
work of the family of the exponential smoothing methods. 
Additionally, a state space framework was elaborated, 
which can be applied to all the exponential smoothing mod-
els and which allows computation of prediction intervals, 
likelihood, and model selection criteria (Hyndman and 
Khandakar, 2008; Hyndman et al., 2002). 

The aim of this paper is to compare statistical short-time 
forecasting of air temperature, precipitation and wind speed 
using exponential smoothing on the basis of 31 years time 
series originating from four different locations in Europe.

MATERIALS AND METHODS

Four study sites were selected according to the fol-
lowing criteria in order to offer a cross-section of climatic 
conditions in Europe as well as their shifts under climate 
change. In order to represent the contrasting climatic con-
ditions with a minimum number of sites, it was decided 
to choose sites for northern, central, and southern Europe. 
Jokioinen in Finland was chosen for northern Europe and 
Lleida in Spain for southern Europe. For central Europe, 
two sites were chosen: Dikopshof located in the west part 
of Germany and Lublin in the east part of Poland. The four 
sites represent boreal, Atlantic central, continental, and 

Mediterranean south climates. The principal characteristics 
of these sites and their agro-climatic conditions are sum-
marised in Table 1.

Jokioinen site has a subarctic climate that has severe 
winters, no dry season, cool, short summers, and strong sea- 
sonality (Köppen-Geiger classification: Dfc). Lleida has 
a semi-arid climate with Mediterranean-like precipitation 
patterns (annual average of 369 mm), foggy and mild win-
ters, and hot and dry summers (Köppe-Geiger classification: 
BSk). Dikopshof represents a maritime temperate climate 
(Köppen-Geiger climate classification: Cfb). There is sig-
nificant precipitation throughout the year in the German 
site. Lublin site has a warm summer continental climate 
(Köppen-Geiger climate classification: Dfb). The weather 
time series in all sites were measured with standard equip-
ment, comparable for all stations. Three variables were 
considered in the present study: air temperature, precipita-
tion, and wind speed. Datasets were collected on a daily 
basis from January 1st 1980 to December 31st 2010 (11 322 
days). For Jokioinen, wind speed was measured at 10 m 
height and was converted to a height of 2 m assuming the 
logarithmic wind profile of Allen et al. (1998, their eq. 47). 
For Lleida, the wind speed time series had gaps of 82 days 
in autumn 1986 and global radiation data had gaps of 48 
days (11 days in September 1988 and 37 days in spring 
1990). These gaps were filled by taking the absolute values 
of the associated grid cell in the ERA-interim dataset.

The descriptive statistics of the meteorological time 
series are presented in Table 2. The highest mean and me- 
dian values of air temperature in the period of 31 years 
were observed at Lleida station and the lowest at Jokioinen 
station. The parameters of skewness and kurtosis of the ana-
lysed time series give information about differences in their 
statistical distributions. Air temperature is characterized by 
negative skewness and small kurtosis, which inform us that 
this distribution is left-tailed and has a more rounded peak 
and thinner tails compared to the wind speed distribution, 
characterized by positive skewness and larger kurtosis. 
Completely different distribution shape can be observed 
for precipitation, with higher positive skewness and very 
large kurtosis values for all the stations. This means that 
this distribution is strongly right-tailed and has a very sharp 
peak and fat tail. 

T a b l e  1. The principal characteristics of sites and their agro-climatic conditions

Site Jokioinen Dikopshof Lublin Lleida

Country Finland (FI) Germany (DE) Poland (PL) Spain (ES)

Latitude (oN) 60o48’ 50o48’29’’ 51o14’55’’ 41o42’

Longitude (oE) 23o30’ 6o57’7’’ 22o33’37’’ 1o6’

Altitude (meters) 104 60 194 337

Environmental zone Boreal Atlantic Central Continental Mediterranean South
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A time series is an ordered sequence of values of a va- 
riable at equally spaced time intervals, eg hourly tem-
peratures at weather stations. The main aim of time series 
modelling is to carefully collect and rigorously study the 
past observations of a time series to develop an appro- 
priate model which describes the inherent structure of the 
series. This allows explaining the data in such a way allow-
ing prediction, monitoring, or control. A common method 
used to study time series is the exponential smoothing. 
The idea of exponential smoothing is to smooth the noise 
out of the original series and to use the smoothed series 
in forecasting future values of the variable of interest. 
The exponential smoothing is a smoothing technique used 
to reduce irregularities such as a long-term direction and 
random fluctuations with known periodicity in time series 
data, thus providing a clearer view of the true underlying 
behaviour of the series. It also provides an effective means 
of predicting future values of the time series (forecasting). 
In exponential smoothing, forecasts are weighted combina-
tions of past observations, with recent observations given 
relatively more weight than older observations. The name 
‘exponential smoothing’ reflects the fact that the weights 
decrease exponentially as the observations get older. The 
main advantage of the exponential smoothing methods is 
their robustness that allows a fast and efficient implementa-
tion of the technique together with the descriptive and the 
inferential statistics.

Exponential smoothing was introduced and developed 
by Brown (1959, 1963). Independently, Holt (2004) develo- 
ped a similar exponential smoothing method with a different 
approach for smoothing seasonal data. Since then, several 
authors (Gardner, 1985; Hyndman et al., 2002, 2008; Muth, 
1960; Winters, 1960) have worked to develop exponential 
smoothing within a statistical framework. 

Taking into account the pattern of the time series con-
sidered in this paper, we focus on two models: the simple 
exponential smoothing and the exponential smoothing with 
no-trend and with seasonality which are denoted as the 
(N,N) model and the (N,A) model, respectively (Hyndman 
et al., 2008), where the pair (*,*) stands for a possible trend 
and seasonal combinations. It should be noted that in the 
(*,*) notation A stands for the additive component and N 
stands for none.

The (N,N) model is used for data patterns without cyclic 
variation or pronounced trend. This model for a given time 
series y1, ..., yn is given by the equation: 

lt=α yt + (1-α) lt-1,                                        (1)

where: lt denotes an exponential smoothed value of the 
series at time t and a is a smoothing weight. The method 
of simple exponential smoothing (N,N) takes the forecast 
for the previous period and adjusts it using a forecast error. 
Hence, the new forecast is simply the old forecast plus an 
adjustment for the error that occurred in the last forecast.

T a b l e  2.  Descriptive statistics of the whole daily 31 years meteorological time series from 6 stations in Germany (DE), Finland 
(FI), Poland (PL), and Spain (ES) 

Meteorological 
variable Site Mean Min Max Std Median Skewness Kurtosis

Precipitation 
(mm day-1)

Jokioinen (FI) 1.7  0.0 79.1 3.9 0.1 5.0 49.3

Dikopshof (DE) 1.7 0.0 75.4 3.8 0.0 4.5 38.1

Lublin (PL) 1.5 0.0 61.6 3.9 0.0 5.7 49.7

Lleida (ES) 0.9 0.0 83.6 3.8 0.0 7.2 75.7

Wind speed
(m s-1)

Jokioinen (FI) 2.3  0.0 7.7 1.0 2.6 0.5 3.5

Dikopshof (DE) 2.6 0.2 9.4 1.3 2.4 1.1 4.8

Lublin (PL) 3.0 0.0 17.4 1.8 3.1 1.5 6.5

Lleida (ES) 2.6 0.3 17.8 1.7 2.2 2.0 9.2

Air
temperature
(°C)

Jokioinen (FI) 4.6  -33.4 25.0 9.3 4.7 -0.4 2.8

Dikopshof (DE) 10.2  -16.8 28.9 6.8 10.5 -0.2 2.5

Lublin (PL) 8.7  -22.8 28.3 8.8 9.1 -0.2 2.4

Lleida (ES) 15.0 -8.3 33.1 7.6 14.7 0.0 2.1

Mean, min, max, standard deviation (Std) and median have units corresponding to the units of meteorological variable, skewness and 
kurtosis are non-dimensional.
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The (N,A) model is used for data which do not indi-
cate any trend and experience regular changes repeated 
with nearly the same pace and intensity. This model for 
given time series y1, ..., yn is well described by the system 
of equations:

lt=αyt - st-m+(1-α) lt-1,                            (2)

st = δ(yt - lt-1)+(1-δ) st-m,                       (3)

where: st denotes a smoothed seasonal component of the 
series at time t, m is the length of seasons, and δ is a season-
al weight. The smoothing Eqs (1), (2), and (3) determine 
how the smoothing value changes as time progresses. The 
smoothing weights determine the contribution of the pre- 
vious smoothing value to the current smoothing value.

At the beginning, the smoothing process computes the 
smoothing value for time t = 1. However, this computation 
requires an initial estimate of the smoothing value at time 
t = 0. An appropriate choice for the initial smoothing state 
S0 is computed as the mean for all values included in com-
plete seasonal cycles.

Smoothing weight α and seasonal weight δ take values 
between zero and one. If α=1, then the previous observa-
tions are ignored entirely. If α=0, the current observation is 
ignored entirely, and the smoothed value consists entirely 
of the previous smoothed value. Values of α in-between 
produce intermediate results.

If δ = 0, then the seasonal component for a particular 
point in time is predicted to be identical to the predicted 
seasonal component for the respective time during the 
previous seasonal cycle, which in turn is predicted to be 
identical to that from the previous cycle, and so on. Thus, 
a constant unchanging seasonal component is used to 
generate the one-step-ahead forecasts. If δ = 1, then the sea-
sonal component is modified ‘maximally’ at every step by 
the respective forecast error.

Suppose we have observed data up to and including 
time t-1 and we want to forecast the next value yt of our 
time series. If the forecast is denoted by ŷt+h|t, then the fore-
cast error et is found to be yt-ŷt+h|. The forecast for the next 
period is ŷt+h|t=lt for the (N,N) model and ŷt+h|h= lt + st-m+h for 
the (N,A) model. 

A visual check of the accuracy of forecasts is often the 
most powerful method for determining whether or not the 
current exponential smoothing model fits the data. We can 
also examine autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots. The ACF plot is a bar 
chart of the coefficients of correlation between a time series 
and lags of itself. The PACF plot is a plot of the partial cor-
relation coefficients between the series and lags of itself.

To determine the optimum parameters of the chosen 
model, we use the mean absolute error (MAE) and the root 
mean squared error (RMSE): 

,|1=
1∑ =

n

t te|
n

MAE
 
     (4)

,1=
1

2∑ =

n

t te
n

RMSE  
(5)

where: n is the number of periods of time.
The MAE and the RMSE can be used together to diag-

nose the variation in the errors in a set of forecasts. The 
MAE is the average over the verification sample of the 
absolute values of the differences between forecast and the 
corresponding observation. The RMSE is the square root of 
the average squared values of the differences between the 
forecast and the corresponding observation. Those errors 
have the same units of measurement and depend on the 
units in which the data are measured.

The chosen model was run by using computer software 
STATISTICA, Stat Soft Inc., USA. The implementation of 
the exponential smoothing methods in STATISTICA fol-
lows closely the survey of techniques presented by Gardner 
(1985), who proposed a ‘unified’ classification of expo-
nential smoothing methods. The parameters α and δ of 
the (N,A) model and the parameter α of the (N,N) model 
were selected by a grid search of the parameters space and 
the accuracy was chosen as a criterion for determination 
thereof. The values of the parameters were systematically 
evaluated by starting with value α = 0.1 and δ = 0.1 with 
increments of 0.1. Then α and δ were chosen to produce 
the smallest MAE and RMSE for the residuals (ie observed 
values minus one-step-ahead forecasts).

The majority of plots and the basic statistics of the time 
series were completed with the use of RStudio integrated 
development environment for R version 0.97.551 (R Core 
Team, 2014).

RESULTS AND DISCUSSION

The visual analysis of the air temperature time series 
and their decomposition plots (not shown) do not indicate 
any long-term trends, but they have regular fluctuations 
which are repeated from year to year with about the same 
timing and level of intensity. The ACF and PACF plots 
indicate seasonal temperature patterns without trends at all 
four sites (Fig. 1). A seasonal character with no trend was 
also observed for wind speed (Fig. 2). This implies that the 
best exponential smoothing model for air temperature and 
wind speed is the additive seasonal model (N,A). 

The results obtained for air temperature series are pre-
sented in Table 3. It can be observed that the best-fitting 
model for the temperature series from each of the consid-
ered sites was characterized by the same pair of parameters 
a=0.9 and δ = 0.1. This means that changes in air tempera-
ture time series have the same nature and pattern for the 
considered sites. Similarly, we obtained δ = 0.1 for all the 
wind speed models, but the a value for Dikopshof, Lublin, 
and Lleida wind speed time series that generates the small-
est MAE is different from the a value that produces the 
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smallest RMSE (Table 4). This low value of the seasonal 
parameter δ suggests that the air temperature and wind 
speed data are not strongly affected by seasonal factors. 
The high value of the smoothing parameter a indicates that 
the fluctuation of the air temperature is large and the low 
values of a show small variablity in wind speed data. The 
smoothed value calculated for the final period in each of the 

finally selected models can be used for forecasting future 
statistics. Figure 3 presents the comparison between real 
and annual forecast of the air temperature in Jokioinen and 
Lleida, respectively, obtained using the (N,A) model with 
parameters a=0.9 and δ = 0.1. The real values and annual 
forecast of the wind speed in Dikopshof and in Lublin are 
shown in Fig. 4.

Fig. 1. ACF and partial ACF plots for air temperature time series from: A and B – Lleida, Spain; C and D – Jokioinen, Finland; stations.

Fig. 2. ACF and partial ACF plots for wind speed time series from: A and B – Dikopshof, Germany; C and D – Lublin, 
Poland; stations.
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T a b l e  3.  Exponential smoothing parameters for mean air temperature ((N,A) model)

Site S0 α δ MAE (°C) RMSE (°C)

Jokioinen 4.657 0.9 0.1 2.0482 2.7626 

Dikopshof 10.250 0.9 0.1 1.7113 2.1932

 Lublin 8.670 0.9 0.1 1.9117 2.4877

Lleida 15.050 0.9 0.1 1.5772 2.0230

T a b l e  4.  Exponential smoothing parameters for wind speed ((N,A) model)

Site S0 α δ MAE (m s-1) RMSE (m s-1)

Jokioinen 4.657 0.9 0.1 2.0482 2.7626 

Dikopshof 10.250 0.9 0.1 1.7113 2.1932

 Lublin 8.670 0.9 0.1 1.9117 2.4877

Lleida 15.050 0.9 0.1 1.5772 2.0230

Fig. 3. Smoothed time series and annual forecasting of air temper-
ature ((N,A) model) in Jokioinen (upper plot) and Lleida (lower 
plot).

Fig. 4. Smoothed time series and annual forecasting of wind speed 
((N,A) model) in in Dikopshof (upper plot) and Lublin (lower 
plot).
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A quite different situation was found for precipitation 
time series. The analysis of the time series courses and the 
ACF and PACF plots revealed that the (N,N) model should 
be applied to Dikopshof and Lleida time series, which do 
not demonstrate a trend or seasonality, and the (NA) model 
should be applied to Lublin and Jokioinen time series, 
which do not demonstrate a trend but show seasonality 
(Fig. 5). The parameters that produced the smallest MAE or 
RMSE are presented in Table 5.

For the Dikopshof and Lleida precipitation time series, 
the value of α that yields the smallest MAE differs from the 
α value that generates the smallest RMSE. While α = 0.1 
gives the smallest RMSE for both sites, the smallest MAE is 
generated by different values of α. The smallest MAE and 
RMSE values for Lublin and Jokioinen precipitation time 
series are generated using α=0.1 and δ = 0.1. These low va- 
lues of the α and δ parameters suggest that the precipitation 

Fig. 5. ACF and partial ACF for precipitation time series from: A and B – Dikopshof, Germany; C and D – Jokioinen, 
Finland; stations. 

T a b l e  5.  Exponential smoothing parameters for precipitation (N,N) and (N,A) models

Site S0 α δ
MAE RMSE

(mm day-1)

(N,N) model

Dikopshof 1.719
0.1 – 2.228 3.809

0.4 – 2.185 4.015

Lleida 0.932
0.1 – 1.504 3.808

0.5 – 1.465 4.150

(N,A) model

Jokioinen 1.720 0.1 0.1 2.263 3.929

Lublin 1.470 0.1 0.1 2.109 4.038
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data from Lublin and Jokioinen have small variability and 
seasonality. Figure 6 displays the actual values and the 
forecast of the precipitation in Jokioinen and Lleida.

The results indicate that the use of exponential smooth-
ing to weather time series analysis is a valuable tool to get 
information about analysed data structures and their compo-
nents, being a good basis for successful future predictions. 
Considerable differences exist between the selected models 
of air temperature, wind speed, and precipitation and their 
parameters (α and δ) for the particular sites. Comparable 
results were obtained earlier by (Cadenasa and Rivera, 
2010; Niu et al., 2015; Yusof and Kane, 2012). The pre-
sented results suggest that structures of the time series of 
particular quantities obtained in various climatic zones dif-
fer substantially. This is in agreement with results obtained 
by Baranowski et al. (2015), who analyzed multifractal 
properties of meteorological time series coming from dif-
ferent climatic zones and noticed large differences in the 
multifractal spectra and sources of multifractality for series 
in different climatic zones. Earlier studies (Bartos and 
Jánosi, 2006; Lin and Fu, 2008; Trnka et al., 2014) also 
indicated that the analysis of temporal scaling properties is 

fundamental for transferring locally measured fluctuations 
to larger scales and vice-versa. which should be included in 
forecasting models.  

The presented study have delivered quite promising 
results of short term forecasting of weather time series using 
the simple exponential smoothing method, however further 
comparative analyses are planned, especially with the use 
of more elaborate models such as seasonal ARIMA mo- 
dels or artificial neural networks ANN. The development of 
short term forecasting of meteorological time series is fun-
damental for crop modelling, creating precision irrigation 
systems, and can help decision makers establish strategies 
for proper planning of agriculture (Pinson et al., 2010).

CONCLUSIONS

1. The exponential smoothing method applied to anali- 
zed metorological time series belonging to diffrent climatic 
zones enabled to get short time forecasting with good pre-
diction power.

2. To predict air temperature and wind speed, the model 
of seasonal exponential smoothing with no-trend should 
be preferably used. In contrast, precipitation series exhibit 
site-specific model parameters. 

3. It has been proven that for obtaining reasonable 
knowledge about the overall forecasting error, more than 
one measure should be used in practice. 

4. The results highlight the importance of considering 
the seasonality in forecasting of air temperature or wind 
speed in Europe, contrasting to forecasting precipitation. 
A best-fitting model for precipitation depends on the site. 
The Boreal and Continental sites are better described by 
additive seasonal exponential smoothing, while simple 
exponential smoothing is a better model for Atlantic 
Central and Mediterranean South sites. 

5. Because of its simplicity and exactness, the exponen-
tial smoothing method has proved to be very useful for air 
temperature, precipitation, and wind speed forecasting.
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