Skip to main content
Log in

Aerosol Synthesis of Fullerene Nanocrystals in Controlled Flow Reactor Conditions

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Fullerene nanocrystals in the size range 30–300 nm were produced starting from atomized droplets of C60 in toluene. The experiments were carried out under well-controlled conditions in a laminar flow reactor at temperatures of 20–600°C. Particle transformation and crystallization mechanisms of polydisperse and monodisperse (size classified) fullerene aerosol particles were studied. The results show that fullerene particles are roughly spherical having pores and voids at temperatures of 300°C and below. Particles are already crystalline and likely fine-grained at 20°C and they are polycrystalline at temperatures up to 300°C. At 400°C monodisperse particles evaporate almost completely due to their low mass concentration. Polydisperse particles are crystalline, but sometimes heavily faulted. At 500°C most of the particles are clearly faceted. In certain conditions, almost all particles are hexagonal platelets having planar defects parallel to large (111) faces. We suggest that at 500°C fullerene particles are partially vaporized forming residuals with lamellar defects such as twins and stacking faults, which promote crystal growth during synthesis. Subsequently fullerene vapor is condensed on faces with defects and hexagonal particles are grown by a re-entrant corner growth mechanism. At 600°C particles are single crystals, but they have a less distinct shape due to higher vaporization of fullerene. The final size and shape of the particles are mainly determined at the reactor outlet in the short time when the aerosol cools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bögels G., H. Meekes, P. Bennema & D. Bollen, 1999. Twin formation and morphology of vapour grown silver halide crystals. Phil. Mag. A 79, 639-653.

    Google Scholar 

  • Cheng A. & M.L. Klein, 1993. Prediction of the phase diagram of rigid C60 molecules. Phys. Rev. Lett. 71, 1200-1203.

    PubMed  Google Scholar 

  • Dresselhaus M.S., G. Dresselhaus & P.C. Eklund, 1996. Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego, 965 pp.

    Google Scholar 

  • Flagan R. C. & J.H. Seinfeld, 1988. Fundamentals of air pollution engineering. Prentice Hall, Englewood Cliffs, 542 pp.

    Google Scholar 

  • Fujitsuka M., H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A.Watanabe & O. Ito, 1997. Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle. Chem. Lett., 1211-1212.

  • Girifalco L.A., 1992. Molecular properties of C60 in the gas and solid phase. J. Phys. Chem. 96, 858-861.

    Google Scholar 

  • Gurav A.S., Z. Duan, L. Wang, M.J. Hampden-Smith & T.T. Kodas, 1993. Synthesis of fullerene-rhodium nanocomposites via aerosol decomposition. Chem. Mater. 5, 214-216.

    Google Scholar 

  • Gurav A.S., T.T. Kodas, L.-M. Wang, E.I. Kauppinen & J. Joutsensaari, 1994. Generation of nanometer-size fullerene particles via vapor condensation. Chem. Phys. Lett. 218, 304-308.

    Google Scholar 

  • Harris P.J.F., 1995. Growth and structure of supported metal catalyst particles. Int. Mater. Rev. 40, 97-115.

    Google Scholar 

  • Harris P.J.F., R.E. Douthwaite, A.H.H. Stephens & J.F.C. Turner, 1992. The structure and growth of C60 platelets. Chem. Phys. Lett. 199, 631-634.

    Google Scholar 

  • Hinds W.C., 1999. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, Second Edition. John Wiley & Sons, New York, 483 pp.

    Google Scholar 

  • Ito K., K. Ogawa & Y. Ishida, 1998. Preferred orientations in compression deformed and annealed polycrystalline C60. Mater. Trans., JIM 39, 648-651.

    Google Scholar 

  • Jagannathan R., R.V. Mehta, J.A. Timmons & D.L. Black, 1993. Anisotropic growth of twinned cubic crystals. Phys. Rev. B 48, 13261-13265.

    Google Scholar 

  • Janda P., T. Krieg & L. Dunsch, 1998. Nanostructuring of high ordered C60 films by charge transfer. Adv. Mater. 10, 1434-1438.

    Google Scholar 

  • Joutsensaari J., P. Ahonen, U.Tapper, E.I. Kauppinen, J. Laurila & V.-T. Kuokkala, 1996. Generation of nanophase fullerene particles via aerosol routes. Synth. Met. 77, 85-88.

    Google Scholar 

  • Joutsensaari J., E.I. Kauppinen, D. Bernaerts & G. Van Tendeloo, 1998. Crystal growth studies during aerosol synthesis of nanostructured fullerene particles. Mat. Res. Soc. Symp. Proc. 520, 63-68.

    Google Scholar 

  • Kodas T.T. & M.J. Hampden-Smith, 1999. Aerosol processing of materials. Wiley-VCH, New York, 680 pp.

    Google Scholar 

  • Kolari P.J., P. Maaranen, E. Kauppinen, J. Joutsensaari, K. Jauhiainen, K. Pelkonen & S. Rannikko, 1996. Nanoparticles in biomedical applications: experiments with activated carbon, fullerene and iron oxide. Med. & Biolog. Eng. & Comp. 34 S1, 153-154.

    Google Scholar 

  • Kroto H.W., J.R. Heath, S.C. O'Brien, R.F. Curl & R.E. Smalley, 1985. C60: Buckminsterfullerene. Nature 318, 162-163.

    Google Scholar 

  • Krätschmer W., L.D. Lamb, K. Fostiropoulos & D.R. Huffman, 1990. Solid C60: a new form of carbon. Nature 347, 354-358.

    Google Scholar 

  • Li Y.Z., J.C. Patrin, M. Chander, J.H. Weaver, L.P.F. Chibante & R.E. Smalley, 1991. Ordered overlayers of C60 on GaAs(110) studied with scanning tunneling microscopy. Science 252, 547-548.

    Google Scholar 

  • Lüthi R., H. Haefke, E. Meyer, L. Howard, H.-P. Land, G. Gerth & H.-J. G¨untherodt, 1994. Frictional and atomic-scale study of C60 thin films by scanning force microscopy. Z. Phys. B 95, 1-3.

    Google Scholar 

  • Martin T.P., U. Näher, H. Schaber & U. Zimmermann, 1993. Clusters of fullerene molecules. Phys. Rev. B 70, 3079-3082.

    Google Scholar 

  • Mchedlov-Petrossyan N.O., V.K. Klochkov & G.V. Andrievsky, 1997. Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes. J. Chem. Soc., Faraday Trans. 93, 4343-4346.

    Google Scholar 

  • Ming N. & I. Sunagawa, 1988. Twin lamellae as possible self-perpetuating step source. J. Cryst. Growth 87, 13-17.

    Google Scholar 

  • Ohno T. & S. Yatsuya, 1998. Growth of fullerene nanoparticles prepared by the gas-evaporation technique. J. Mater. Sci. 33, 5843-5847.

    Google Scholar 

  • Pashley D.W. & M.J. Stowell, 1963. Electron microscopy and diffraction on twinned structures in evaporated films of gold. Phil. Mag. 8, 1605-1632.

    Google Scholar 

  • Pauwels B., D. Bernaerts, S. Amelinckx, G. Van Tendeloo, J. Joutsensaari & E.I. Kauppinen, 1999. Multiply twinned C60 and C70 nanoparticles. J. Cryst. Growth 200, 126-136.

    Google Scholar 

  • Piacente V., G. Gigli, P. Scardala, A. Giustini & D. Ferro, 1995. Vapor pressure of C60 buckminsterfullerene. J. Phys. Chem. 99, 14052-14057.

    Google Scholar 

  • Rader D.J., P.H. McMurry & S. Smith, 1987. Evaporation rates of monodisperse organic aerosols in the 0.02-to 0.2-µm-diameter range. Aerosol Sci. Technol. 6, 247-260.

    Google Scholar 

  • Reid R.C., J.M. Prausnitz & B.E. Poling, 1987. The properties of gases and liquids, Fourth Edition. McGraw-Hill, New York, 741 pp.

    Google Scholar 

  • Reischl G.P., 1991. Measurement of ambient aerosols by the different mobility analyzer method: concepts and realization criteria for the size range between 2 and 500 nm. Aerosol Sci. Technol. 14, 5-24.

    Google Scholar 

  • Rogers R.R. & M.K. Yau, 1989. A short course in cloud physics, Third Edition. Pergamon Press, Oxford, 293 pp.

    Google Scholar 

  • Saab A.P., M. Laub, V.I. Srdanov & G.D. Stucky, 1998. Oxidized thin films of C60: a new humidity-sensing material. Adv. Mater. 10, 462-465.

    Google Scholar 

  • Saito Y., Y. Ishikawa, A. Ohshita, H. Shinohara & H. Nagashima, 1992. Fivefold twinned C60 crystals grown by vacuum deposition. Phys. Rev. B 46, 1846-1848.

    Google Scholar 

  • Saito Y., T. Yoshikawa, Y. Ishikawa, H. Nagashima & H. Shinohara, 1993. Electron microscopy of fullerene thin films grown on solid surfaces. Mater. Sci. Eng., B 19, 18-24.

    Google Scholar 

  • Scrivens W.A. & J.M. Tour, 1994. Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human karatinocytes. J. Am. Chem. Soc. 116, 4517-4518.

    Google Scholar 

  • Tada T. & T. Kanayama, 1996. Nanolithography using fullerene films as an electron beam resist. Jpn. J. Appl. Phys., Part 2 35, L63-L65.

    Google Scholar 

  • Tanigaki K., S. Kuroshima, J. Fujita & T.W. Ebbesen, 1993. Crystal growth of C60 thin films on layered substrates. Appl. Phys. Lett. 63, 2351-2353.

    Google Scholar 

  • Verheijen M.A., H. Meekes, G. Meijer, E. Raas & P. Bennema, 1992. Growth and morphology of C60 crystals. Chem. Phys. Lett. 191, 339-344.

    Google Scholar 

  • Van Cleempoel A., J. Joutsensaari, E. Kauppinen, R. Gijbels & M. Claeys, 1998. Aerosol synthesis and characterization of ultrafine fullerene particles. Fuller. Sci. Technol. 6, 599-627.

    Google Scholar 

  • Van Tendeloo G., C. Van Heurck, J. Van Landuyt, S. Amelinckx, M.A. Verheijen, P.H.M. van Loosdrecht & G. Meijer, 1992. Phase transitions in C60 and related microstructures:Astudy by electron diffraction and electron microscopy. J. Phys. Chem. 96: 7424-7430.

    Google Scholar 

  • Wagner R.S., 1960. On the growth of germanium dendrites. Acta Metall. 8, 57-60.

    Google Scholar 

  • Wang S.C. & R.C. Flagan, 1990. Scanning electrical mobility spectrometer. Aerosol Sci. Technol. 13, 230-240.

    Google Scholar 

  • Winklmayr W., G.P. Reischl, A.O. Lindner & A. Berner, 1991. A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J. Aeros. Sci. 22, 289-296.

    Google Scholar 

  • Wragg J.L., J.E. Chamberlain, H.W. White, W. Kr¨atschmer & D.R. Huffman, 1990. Scanning tunnelling microscopy of solid C60/C70. Nature 348, 623-624.

    Google Scholar 

  • Xiong Y., S.W. Lyons & T.T. Kodas, 1992. Volatile metal oxide evaporation during aerosol decomposition. J. Am. Ceram. Soc. 78, 2490-2496.

    Google Scholar 

  • Yanagi H. & T. Sasaki, 1994. Epitaxial growth of C60 and KI(001) surface. Appl. Phys. Lett. 65, 1222-1223.

    Google Scholar 

  • Ying Q., J. Marecek & B. Chu, 1994. Slow aggregation of buckminsterfullerene (C60) in benzene solution. Chem. Phys. Lett. 219, 214-218.

    Google Scholar 

  • Zhou W.L., W. Zhao, K.K. Fung, L.Q. Chen & Z.B. Zhang, 1993. Microstructures of C60 textured thin film. Physica C 214, 19-24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.I. Kauppinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joutsensaari, J., Ahonen, P., Kauppinen, E. et al. Aerosol Synthesis of Fullerene Nanocrystals in Controlled Flow Reactor Conditions. Journal of Nanoparticle Research 2, 53–74 (2000). https://doi.org/10.1023/A:1010089628868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010089628868

Navigation