Skip to main content
Log in

Spatially resolved (semi)quantitative determination of iron (Fe) in plants by means of synchrotron micro X-ray fluorescence

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Iron (Fe) is an essential element for plant growth and development; hence determining Fe distribution and concentration inside plant organs at the microscopic level is of great relevance to better understand its metabolism and bioavailability through the food chain. Among the available microanalytical techniques, synchrotron μ-XRF methods can provide a powerful and versatile array of analytical tools to study Fe distribution within plant samples. In the last years, the implementation of new algorithms and detection technologies has opened the way to more accurate (semi)quantitative analyses of complex matrices like plant materials. In this paper, for the first time the distribution of Fe within tomato roots has been imaged and quantified by means of confocal μ-XRF and exploiting a recently developed fundamental parameter-based algorithm. With this approach, Fe concentrations ranging from few hundreds of ppb to several hundreds of ppm can be determined at the microscopic level without cutting sections. Furthermore, Fe (semi)quantitative distribution maps were obtained for the first time by using two opposing detectors to collect simultaneously the XRF radiation emerging from both sides of an intact cucumber leaf.

Elemental distribution maps within intact tomato roots as determined by confocal micro X‐ray fluorescence

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mengel K, Kirkby E, Kosegarten H, Appel T (2001) Iron. In: Mengel K, Kirkby EA (eds) Mineral nutrition, 5th edn. Kluwer, Dordrecht, pp 553–571

    Google Scholar 

  2. Strasser O, Khöl K, Römheld V (1999) Overestimation of apoplastic Fe in roots of soil grown plants. Plant Soil 210:179–187

    Article  CAS  Google Scholar 

  3. Kosegarten H, Koyro H-W (2001) Apoplastic accumulation of iron in the epidermis of maize (Zea mays) roots grown in calcareous soil. Physiol Plant 113:515–522

    Article  CAS  Google Scholar 

  4. Mesjasz-Przybylowicz J (2001) The nuclear microprobe—a challenging tool in plant sciences. Acta Phys Polon A 100(5):659–668

    CAS  Google Scholar 

  5. Kanngießer B, Malzer W, Pagels M, Lühl L, Weseloh G (2007) Three-dimensional micro-XRF under cryogenic conditions: a pilot experiment for spatially resolved trace analysis in biological specimens. Anal Bioanal Chem 389:1171–1176

    Article  Google Scholar 

  6. Lombi E, Scheckel KG, Kempson IM (2011) In situ analysis of metal(loid)s in plants: state of the art and artefacts. Environ Exp Bot 72:3–17

    Article  CAS  Google Scholar 

  7. Roschzttardtz H, Grillet L, Isaure MP, Conéjéro G, Ortega R, Curie C, Mari S (2011) Plant cell nucleolus as a hot spot for iron. J Biol Chem 286(32):27863–27866

    Article  CAS  Google Scholar 

  8. Wu B, Becker JS (2012) Imaging techniques for elements and element species in plant science. Metallomics 4:403–416

    Article  CAS  Google Scholar 

  9. McCully ME, Canny M, Huang CX, Miller C, Brink F (2010) Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology: energy dispersive X-ray microanalysis (CEDX) applications. Funct Plant Biol 37:1011–1040

    Article  Google Scholar 

  10. Schroer CG, Benner B, Günzler TF, Kuhlmann M, Lengeler B, Schröder WH, Kuhn AJ, Simionovici A, Snigirev A, Snigireva I (2003) High resolution element mapping inside biological samples using fluorescence microtomography. J Phys IV France 104:353–362

    Article  Google Scholar 

  11. McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    Article  CAS  Google Scholar 

  12. Scheckel KG, Hamon R, Jassogne L, Rivers M, Lombi E (2007) Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia. Plant Soil 290:51–60

    Article  CAS  Google Scholar 

  13. Terzano R, Al Chami Z, Vekemans B, Janssens K, Miano T, Ruggiero P (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES. J Agric Food Chem 56:3222–3231

    Article  CAS  Google Scholar 

  14. Lombi E, de Jonge MD, Donner E, Kopittke PM, Howard DL, Kirkham R, Ryan CG, Paterson D (2011) Fast X-ray fluorescence microtomography of hydrated biological samples. PLoS One 6(6):e20626

    Article  CAS  Google Scholar 

  15. Kopittke PM, Menzies NW, de Jonge MD, McKenna BA, Donner E, Webb RI, Paterson DJ, Howard DL, Ryan CG, Glover CJ, Scheckel KG, Lombi E (2011) In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiol 156:663–673

    Article  CAS  Google Scholar 

  16. Janssens K, De Nolf W, Van der Snickt G, Vincze L, Vekemans B, Terzano R, Brenker F (2010) Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. Trends Anal Chem 29(6):464–478

    Article  CAS  Google Scholar 

  17. Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493

    Google Scholar 

  18. Vincze L, Janssens K, Adams F (1993) A general Monte Carlo simulation of energy-dispersive X-ray fluorescence spectrometers: I. Unpolarized radiation, homogeneous samples. Spectrochim Acta B 48:553–573

    Article  Google Scholar 

  19. Vincze L, Janssens K, Adams F, Jones W (1995) A general Monte Carlo simulation of energy dispersive X-ray fluorescence spectrometers: III. Polarized polychromatic radiation, homogeneous samples. Spectrochim Acta B 50:1481–1500

    Article  Google Scholar 

  20. Vincze L, Janssens K, Adams F, Rivers L, Jones W (1995) A general Monte Carlo simulation of EDXRF spectrometers: II. Polarized monochromatic radiation, homogeneous samples. Spectrochim Acta B 50:127–147

    Article  Google Scholar 

  21. Vincze L, Janssens K, Vekemans B, Adams F (1999) Monte Carlo simulation of X-ray fluorescence spectra: Part 4. Photon scattering at high X-ray energies. Spectrochim Acta B 54:1711–1722

    Article  Google Scholar 

  22. Bottigli U, Brunetti A, Golosio B, Oliva P, Stumbo S, Vincze L, Randaccio P, Bleuet P, Simionovici A, Somogyi A (2004) Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments. Spectrochim Acta B 59:1747–1754

    Article  Google Scholar 

  23. Brenker F, Vollmer C, Vincze L, Vekemans B, Szymanski A, Janssens K, Szaloki I, Nasdala L, Joswig W, Kaminsky F (2007) Carbonate from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9

    Article  CAS  Google Scholar 

  24. Szaloki I, Lewis DG, Bennett CA, Kilic A (1999) Application of the fundamental parameter method to the in vivo X-ray fluorescence analysis of Pt. Phys Med Biol 44:1245–1255

    Article  CAS  Google Scholar 

  25. Schoonjans T, Silversmit G, Vekemans B, Schmitz S, Burghammer M, Riekel C, Brenker FE, Vincze L (2012) Fundamental parameter based quantification algorithm for confocal nano-X-ray fluorescence analysis. Spectrochim Acta B 67:32–42

    Article  CAS  Google Scholar 

  26. Schneider T, Strasser O, Gierth M, Scheloske S, Povh B (2002) Micro-PIXE investigations of apoplastic iron in freeze-dried root cross-sections of soil grown barley. Nucl Instrum Meth B 189:487–493

    Article  CAS  Google Scholar 

  27. Tylko G, Mesjasz-Przybylowicz J, Przybylowicz WJ (2007) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Microsc Res Tech 70:55–68

    Article  CAS  Google Scholar 

  28. Vogel-Mikus K, Pongrac P, Kump P, Necemer M, Simcic J, Pelicon P, Budnar M, Povh B, Regvar M (2007) Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Pollut 147:50–59

    Article  CAS  Google Scholar 

  29. Kim SA, Punshon T, Lanzirotti A, Li LT, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    Article  CAS  Google Scholar 

  30. Tomasi N, De Nobili M, Gottardi S, Zanin L, Mimmo T, Varanini Z, Roemheld V, Pinton R, Cesco S (2012) Physiological and molecular characterization of Fe acquisition by tomato plants from natural Fe complexes. Biol Fertil Soils. doi:10.1007/s00374-012-0706-1

  31. Tomasi N, Rizzardo C, Monte R, Gottardi S, Jelali N, Terzano R, Vekemans B, De Nobili M, Varanini Z, Pinton R, Cesco S (2009) Micro-analytical, physiological and molecular aspects of Fe acquisition in leaves of Fe-deficient tomato plants re-supplied with natural Fe-complexes in nutrient solution. Plant Soil 325:25–38

    Article  CAS  Google Scholar 

  32. Pinton R, Cesco S, De Nobili M, Santi S, Varanini Z (1997) Water- and pyrophosphate-extractable humic substances fractions as a source of iron for Fe-deficient cucumber plants. Biol Fertil Soils 26:23–27

    Article  Google Scholar 

  33. Cesco S, Römheld V, Varanini Z, Pinton R (2000) Solubilization of iron by water-extractable humic substances. J Plant Nutr Soil Sci 163(3):285–290

    Article  CAS  Google Scholar 

  34. Zancan S, Cesco S, Ghisi R (2006) Effect of UV-B radiation on iron content and distribution in maize plants. Environ Exp Bot 55:266–272

    Article  CAS  Google Scholar 

  35. Cesco S, Nikolic M, Römheld V, Varanini Z, Pinton R (2002) Uptake of 59Fe from soluble 59Fe-humate complexes by cucumber and barley plants. Plant Soil 241:121–128

    Article  CAS  Google Scholar 

  36. Bulska E, Wysocka IA, Wierzbicka MH, Proost K, Janssens K, Falkenberg G (2006) In vivo investigation of the distribution and the local speciation of selenium in Allium cepa L. by means of microscopic X-ray absorption near-edge structure spectroscopy and confocal microscopic X-ray fluorescence analysis. Anal Chem 78:7616–7624

    Article  Google Scholar 

  37. Vekemans B, Janssens K, Vincze L, Adams F, Van Espen P (1994) Analysis of X-ray spectra by iterative least squares (AXIL)—new developments. X-Ray Spectrom 23:278–285

    Article  CAS  Google Scholar 

  38. Solé A, Papillon E, Cotte M, Walter PH, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta Part B 62:63–68

    Article  Google Scholar 

  39. Cloete KJ, Przybylowicz WJ, Mesjasz-Przybylowicz J, Barnabas AD, Valentine AJ, Botha A (2010) Micro-particle-induced X-ray emission mapping of elemental distribution in roots of a Mediterranean-type sclerophyll, Agathosma betulina (Berg.) Pillans, colonized by Cryptococcus laurentii. Plant Cell Environ 33:1005–1015

    Article  CAS  Google Scholar 

  40. Fodor F, Kovacs K, Czech V, Solti A, Toth B, Lévai L, Boka K, Vertés A (2012) Effects of short term iron citrate treatments at different pH values on roots of iron-deficient cucumber: a Mössbauer analysis. J Plant Physiol 169:1615–1622

    Article  CAS  Google Scholar 

  41. Jiménez S, Morales F, Abadia A, Moreno MA, Gogorcena Y (2009) Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677peach-almond hybrid. Plant Soil 315:93–106

    Article  Google Scholar 

  42. Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25

    Article  CAS  Google Scholar 

  43. Cesco S, Mimmo T, Tonon G, Tomasi N, Pinton R, Terzano R, Neumann G, Weisskopf L (2012) Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review. Biol Fertil Soils 48:123–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research was supported by grants from Italian MIUR (FIRB-Programma “Futuro in Ricerca”) and Free University of Bolzano (TN5046 and TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 “Structuring the European Research Area” Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). Matthias Alfeld receives a Ph.D. fellowship of the Research Foundation—Flanders (FWO). We thank Karen Rickers-Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Terzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzano, R., Alfeld, M., Janssens, K. et al. Spatially resolved (semi)quantitative determination of iron (Fe) in plants by means of synchrotron micro X-ray fluorescence. Anal Bioanal Chem 405, 3341–3350 (2013). https://doi.org/10.1007/s00216-013-6768-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6768-6

Keywords

Navigation