Skip to main content
Log in

Synergism of the Initial Stage of Removal of Dielectric Materials during Electrical Erosion Processing in Electrolytes

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Ceramics and composites, many of whose physicochemical properties significantly exceed similar properties of metals and their alloys, are processed qualitatively mainly by the electroerosion method. Despite the existing works, the mechanism of the initial stage of the removal of materials has not yet been identified. For a comprehensive understanding of the mechanism of the removal of dielectrics, a new model is proposed based on the experimental results obtained on an improved electroerosion installation. It was revealed that the initial stage of the removal of a dielectric material consists of three successive stages that are associated with the synergistic effect on the process of the anionic group of electrolytes, plasma flare, and the cavitation shock. This makes it possible to better understand the mechanism of the removal of composite and ceramic materials, which should contribute to ensuring the machinability of those materials and their wide use in promising technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Soutis, C., Aerospace engineering requirements in building with composites, in Polymer Composites in the Aerospace Industry, Irving, Ph. and Soutis, C., Eds., Woodhead Publishing, 2020, p. 3.

  2. Robinson, M., Matsika, E. and Peng, Q., Application of composites in rail vehicles, in Reference Module in Materials Science and Materials Engineering, 2016, Elsevier, p. 1.

    Google Scholar 

  3. Mavhungu, S.T., Akinlabi, E.T., Onitiri, M.A., and Varachia, F.M., Aluminum matrix composites for industrial use: Advances and trends, Procedia Manuf., 2017, vol. 7, p. 178.

    Article  Google Scholar 

  4. Binner, J., Porter, M., Baker, B., Zou, J., et al., Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—a review, Int. Mater. Rev., 2020, vol. 65, no. 7, p. 389.

    Article  Google Scholar 

  5. Ganga Rao, H., Infrastructure applications of fiber-reinforced polymer composites, in Applied Plastics Engineering Handbook, William Andrew Publishing, 2017, p. 675.

    Google Scholar 

  6. Mann, G.S., Singh, L.P., Kumar, P., and Singh, S., Green composites: A review of processing technologies and recent applications, J. Thermoplast. Comp. Mater., 2020, vo. 33, no. 8, p. 1145.

    Article  Google Scholar 

  7. Boccardi, E., Ciraldo, F.E., and Boccaccini, A.R., Bioactive glass-ceramic scaffolds: Processing and properties, MRS Bull., 2017, vol. 42, no. 3, p. 226.

    Article  Google Scholar 

  8. Ralbag, N., Mann-Lahav, M., Davydova, E.S., Ash, U., et al., Composite materials with combined electronic and ionic properties, Matter, 2019, vol. 1, no. 4, p. 959.

    Article  Google Scholar 

  9. Li, Zh., Zhang, X., Cheng, H., Liu, J., et al., Confined synthesis of 2D nanostructured materials toward electrocatalysis, Adv. Energy Mater., 2020, vol. 10, no. 11, p. 1900486.

    Article  Google Scholar 

  10. Li, N., Huang, S., Zhang, G., Qin, R., et al., Progress in additive manufacturing on new materials: A review, J. Mater. Sci. Technol., 2019, vol. 35, no. 2, p. 242.

    Article  Google Scholar 

  11. Costa, C., Ferreira, L.P., Sá, J.C., Silva, F.J., et al., Implementation of 5S methodology in a metalworking company, in DAAAM International Scientific Book, Branko Katalinic, Ed., Vienna: DAAAM International Editor, 2018, p. 1.

  12. Heidary, H., Karimi, N.Z., and Minak, G., Investigation on delamination and flexural properties in drilling of carbon nanotube/polymer composites, Comp. Struct., 2018, vol. 201, p. 112.

    Article  Google Scholar 

  13. Xu, J., Li, Ch., Mi, S., An, Q., et al., Study of drilling-induced defects for CFRP composites using new criteria, Comp. Struct., 2018, vol. 201, p. 1076.

    Article  Google Scholar 

  14. Bilal, A., Jahan, M.P., Talamona, D. and Perveen, A., Electro-discharge machining of ceramics: A review, Micromachines, 2018, vol. 10, no. 1, p. 10.

    Article  Google Scholar 

  15. Rayat, M.S., Gill, S.S., Singh, R. and Sharma, L., Fabrication and machining of ceramic composites: A review on current scenario, Mater. Manuf. Proc., 2017, vol. 32, no. 13, p. 1451.

    Article  Google Scholar 

  16. Mohri, N., Fukuzawa, Y., Tani, T., Saito, N., et al., Assisting electrode method for machining insulating ceramics, CIRP Annals, 1996, vol. 45, no. 1, p. 201.

    Article  Google Scholar 

  17. Abitov, A.R., Electrophysical and chemical processing of shaped surfaces in silicon workpieces, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Tula, 2011.

  18. Leon, A.V., Zvyadintseva, S.Yu., Chirkov, E.A., Shkodin, A.S., et al., Classification of the main areas of research on hybrid processes, Mekhanika XXI veku, 2019, no. 18, p. 196.

  19. Al-Ahmari, A.M.A., Rasheed, M.S., Mohammed, M.K., and Saleh, T., A hybrid machining process combining micro-EDM and laser beam machining of nickel–titanium-based shape memory alloy, Mater. Manuf. Proc., 2016, vol. 31, no. 4, p. 447.

    Article  Google Scholar 

  20. Li, L., Diver, C., Atkinson, J., Giedl-Wagner, R., et al., Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture, CIRP Annals, 2006, vol. 55, no. 1, p. 179.

    Article  Google Scholar 

  21. Abdukarimov, E.T., Mirkarimov, A.S., and Zaripov A.A., Electroerosion treatment of dielectric materials, Surf. Eng. Appl. Electrochem., 2007, vol. 43, no. 2, p. 77.

    Article  Google Scholar 

  22. Melk, L., Antti, M.L., and Anglada, M., Material removal mechanisms by EDM of zirconia reinforced MWCNT nanocomposites, Ceram. Int., 2016, vol. 42, no. 5, p. 5792.

    Article  Google Scholar 

  23. Zaripov, A.A. and Ashurov, Kh.B., Phenomenological mechanism of the effect of cavitation on EEO glass, Elektron. Obrab. Mater., 2014, vol. 50, no. 2, p. 105.

    Google Scholar 

  24. Yue, X., Yang, X., Tian, J., He, Z., et al., Thermal, mechanical and chemical material removal mechanism of carbon fiber reinforced polymers in electrical discharge machining, Int. J. Machine Tools Manuf., 2018, vol. 133, p. 4.

    Article  Google Scholar 

  25. Yue, X., Li, Q., and Yang, X., Influence of thermal stress on material removal of Cf_SiC composite in EDM, Ceram. Int., 2020, vol. 46, no. 6, p. 7998.

    Article  Google Scholar 

  26. Rajput, V., Goud, M., and Suri, N.M., Study on effective process parameters: Toward the better comprehension of EDCM process, Int. J. Mod. Manuf. Technol., 2019, vol. 11, no. 2, p. 105.

    Google Scholar 

  27. Dutta, H., Debnath, K., and Sarma, D.K., A study of material removal and surface characteristics in microelectrical discharge machining of carbon fiber reinforced plastics, Polym. Compos., 2019, vol. 40, no. 10, p. 4033.

    Article  Google Scholar 

  28. Klocke, F., Mohammadnejad, M., Zeis, M. and Klink, A., Investigation on the variability of existing models for simulation of local temperature field during a single discharge for electrical discharge machining (EDM), Procedia CIRP, 2018, vol. 68, p. 260.

    Article  Google Scholar 

  29. Zaripov, A.A. and Ashurov, Kh.B., Contributions of various factors to the process of electric pulse processing, Uzb. Fiz. Zh., 2016, vol. 18, no. 3, p. 214.

    Google Scholar 

  30. Zaripov, A.A., Processes during electrical discharge machining of dielectrics, Extended Abstract of Doctoral Dissertation, Tashkent: Inst. Ion-Plasma Laser Technol. Acad. Sci. Repub. Uzb., 2019.

  31. Pahlevani, F. and Sahajwalla, V., Effect of glass aggregates and coupling agent on the mechanical behaviour of polymeric glass composite, J. Cleaner Prod., 2019, vol. 227, p. 119.

    Article  Google Scholar 

  32. Thomason, J.L., Glass fibre sizing: A review, Compos. Part A: Appl. Sci. Manuf., 2019, vol. 127, p. 105619.

    Article  Google Scholar 

  33. Furutani, K. and Maeda, H., Machining a glass rod with a lathe-type electro-chemical discharge machine, J. Micromech. Microeng., 2008, vol. 18, no. 6, p. 065006.

    Article  Google Scholar 

  34. Paul, L. and Hiremath, S.S., Improvement in machining rate with mixed electrolyte in ECDM process, Procedia Technol., 2016, vol. 25, p. 1250.

    Article  Google Scholar 

  35. Yan, B.H., Wang, A.C., Huang, C.Y. and Huang, F.Y., Study of precision micro-holes in borosilicate glass using micro EDM combined with micro ultrasonic vibration machining, Int. J. Machine Tools Manuf., 2002, vol. 42, no. 10, p. 1105.

    Article  Google Scholar 

  36. Bobbili, R., Madhu, V., and Gogia, A.K., Effect of wire-EDM machining parameters on surface roughness and material removal rate of high strength armor steel, Mater. Manuf. Proc., 2013, vol. 28, no. 4, p. 364.

    Article  Google Scholar 

  37. Mohammadi, A., Tehrani, A.F., Emanian, E., and Karimi, D., Statistical analysis of wire electrical discharge turning on material removal rate, J. Mater. Proces. Technol., 2008, vol. 205, nos. 1–3, p. 283.

    Article  Google Scholar 

  38. Ashurov, Kh.B. and Zaripov, A.A., Experimental study and model description of a pulsed corona discharge near a solid body placed in a strong electrolyte, Dokl. Akad. Nauk Uzb., 2013, no. 1, p. 26.

  39. Mohammad, Y.A., Maleque, M.A., Banu, A., Sabur, A., et al., Micro electro discharge machining of non-conductive ceramic, Mater. Sci. Forum, 2018, vol. 911, p. 20.

    Article  Google Scholar 

  40. Wei, C., Xu, K., Ni, J., Brzezinski, A.J., et al., A finite element based model for ECDM in discharge regime, Int. J. Adv. Manuf. Technol., 2011, vol. 54, p. 987.

    Article  Google Scholar 

  41. Wei, C., Hu, D., Xu, K., and Ni, J., Electro chemical discharge dressing of metal bond micro grinding tools, Int. J. Machine Tools Manuf., 2011, vol. 51, p. 165.

    Article  Google Scholar 

  42. Bilal, A., Perveen, A., Talamona, D., and Jahan, M.P., Understanding material removal mechanism and effects of machining parameters during EDM of zirconia-toughened alumina ceramic, Micromachines, 2021, vol. 12, no. 1, p. 67.

    Article  Google Scholar 

  43. Rajput, V., Goud, M., and Suri, N.M., Finite element modeling based material removal analysis of non-conductive materials in ECDM using adaptive tool feed system, Int. J. Mod. Manuf. Technol., 2020, vol. 12, no. 1, p. 164.

    Google Scholar 

  44. Kirko, D.L., Oscillatory processes in the plasma of the discharge in electrolyte in a magnetic field, Tech. Phys., 2015, vol. 60, no. 4, p. 505.

    Article  Google Scholar 

  45. Slovetskii, D.I. and Terent’ev, S.D., Electric discharge in electrolytes as a source of nonequilibrium plasma at atmospheric pressure, Khim. Vys. Energii, 2003, vol. 37, no. 5, p. 355.

    Google Scholar 

  46. Fascio, V., Wiithrich, R., Viquerat, D., and Langen H., 3D micro structuring of glass using ECDM, in Proc. Int. Symposium on Micromechatronics and Human Science, 1999, p. 179.

  47. Fascio, V., Langen, H.H., Bleuler, H., and Comninellis, C., Investigations of the SACE, Electrochem. Commun., 2003, vol. 5, p. 203.

    Article  Google Scholar 

  48. Basak, I. and Ghosh, A., Mechanism of spark generation during electrochemical discharge machining: A theoretical model and experimental verification, J. Mater. Process. Technol., 1996, vol. 62, nos. 1–3, p. 46.

    Article  Google Scholar 

  49. Fascio, V., Wuthrich, R. and Bleuler, H., SACE in the light of electrochemistry, Electrochim. Acta, 2004, vol. 49, p. 3997.

    Article  Google Scholar 

  50. Gu, M., Huang, C., Xiao, S. and Liu, H., Improvements in mechanical properties of TiB2 ceramics tool materials by the dispersion of Al2O3 particles, Mater. Sci. Eng.: A, 2008, vol. 486, nos. 1–2, p. 167.

    Article  Google Scholar 

  51. Schneider, S.J. and McDaniel, C.L., Effect of environment upon the melting point of Al2O3, J. Res. Nat. Bureau Standards. Sect. A, Phys. Chem., 1967, vol. 71, no. 4, p. 317.

    Google Scholar 

  52. Jalali, M., Maillard, P., and Wüthrich, R., Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges, J. Micromech. Microeng., 2009, vol. 19, no. 4, p. 045001.

    Article  Google Scholar 

  53. Paul, L. and Hiremath, S.S., Improvement in machining rate with mixed electrolyte in ECDM process, Procedia Technol., 2016, vol. 25, p. 1250.

    Article  Google Scholar 

  54. Zaripov, A.A. and Ashurov, Kh.B., Electrical discharge machining of nonconductive materials, Surf. Eng. Appl. Electrochem., 2011, vol. 47, no. 3, p. 197.

    Article  Google Scholar 

  55. Mohamed A.R., Asfana B. and Mohammad Y.A., Investigation of recast layer of non-conductive ceramic due to micro-EDM, Adv. Mater. Res., 2014, vol. 845, p. 857.

    Article  Google Scholar 

  56. Han, M.S., Min, B.K., and Lee, S.J., Improvement of surface integrity of electro-chemical discharge machining process using powder-mixed electrolyte, J. Mater. Process. Technol., 2007, vol. 191, nos. 1–3, p. 224.

    Article  Google Scholar 

  57. Yang, C.T., Song, S.L., Yan, B.H. and Huang, F.Y., Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte, Int. J. Machine Tools Manuf., 2006, vol. 46, no. 15, p. 2044.

    Article  Google Scholar 

  58. Macdonald, D.D., The history of the point defect model for the passive state: a brief review of film growth aspects, Electrochim. Acta, 2011, vol. 56, no. 4, p. 1761.

    Article  Google Scholar 

  59. Descoeudres, A., Characterization of electrical discharge machining plasmas, Thèse no. 3542, Lausanne, EPFL, 2006.

  60. Siegel, D.M., Innovation in Maxwell’s Electro-Magnetic Theory: Molecular Vortices, Displacement Current, and Light, Cambridge University Press, 2003.

    Google Scholar 

  61. Ivchenkov, G., Displacement currents in metals, dielectrics and vacuum. http://new-idea.kulichki.net/pubfiles/190712004817.pdf.

  62. Abdukarimov, E.T., Mirkarimov, A.M., Zaripov, A.A., Study of electrical discharge in an aqueous electrolyte solution, Uzb. Fiz. Zh., 2003, vol. 5, no. 1, p. 52.

    Google Scholar 

  63. Brennen, C.E., Cavitation and Bubble Dynamics, Cambridge University Press, 2014.

    Google Scholar 

  64. Kuo, K.Y., Wu, K.L., Yang, C.K. and Yan, B.H., Wire electrochemical discharge machining (WECDM) of quartz glass with titrated electrolyte flow, Int. J. Machine Tools Manuf., 2013, vol. 72, p. 50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zaripov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaripov, A.A., Khalilov, U.B. & Ashurov, K.B. Synergism of the Initial Stage of Removal of Dielectric Materials during Electrical Erosion Processing in Electrolytes. Surf. Engin. Appl.Electrochem. 59, 712–718 (2023). https://doi.org/10.3103/S1068375523060194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375523060194

Keywords:

Navigation