Skip to main content
Log in

Monte Carlo simulations of the magnetic behaviour of iron oxide nanoparticle ensembles: taking size dispersion, particle anisotropy, and dipolar interactions into account

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) submitted to an external magnetic field are studied using a Metropolis algorithm. The influence on the M(B) curves of the size distribution of the nanoparticles, of uniaxial anisotropy, and of dipolar interaction between the cores are examined, as well as the influence of drying the samples under a zero or non-zero magnetic field. It is shown that the anisotropy impacts the shape of the magnetization curves, which then deviate from a pure Langevin behaviour, whereas the dipolar interaction has no influence on the curves at 300 K for small particles (with a radius of \(3\,\hbox {nm}\)). The fitting of the magnetization curves of particles with magnetic anisotropy to a Langevin model (including a size distribution of the particles) can then lead to erroneous values of the distribution parameters. The simulation results are qualitatively compared to experimental results obtained for iron oxide nanoparticles (with a \(3.21\, \hbox {nm}\) median radius).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

All data, and the source code of the simulations and fits, are accessible upon request to the corresponding author.

References

  1. A.S. Arbab, J.A. Frank, Cellular mri and its role in stem cell therapy. Regener. Med. 3(2), 199–215 (2008)

    Article  Google Scholar 

  2. J. Borgert, J.D. Schmidt, I. Schmale, J. Rahmer, C. Bontus, B. Gleich, B. David, R. Eckart, O. Woywode, J. Weizenecker, J. Schnorr, M. Taupitz, J. Haegele, F.M. Vogt, J. Barkhausen, Fundamentals and applications of magnetic particle imaging. J. Cardiovasc. Comput. Tomogr. 6(15), 149–153 (2012)

    Article  Google Scholar 

  3. W.F Jr. Brown, Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)

    Article  ADS  Google Scholar 

  4. J.W.M. Bulte, In vivo mri cell tracking: clinical studies. Am. J. Roentgenol. 193, 314–325 (2009)

    Article  Google Scholar 

  5. R.W. Chantrell, N. Walmsley, J. Gore, M. Maylin, Calculations of the susceptibility of interacting superparamagnetic particles. Phys. Rev. B 63(2), 0244101–02441014 (2000)

    Article  Google Scholar 

  6. D.A. Dimitrov, G.M. Wysin, Magnetic properties of superparamagnetic particles by a monte carlo method. Phys. Rev. B 54, 9237 (1996)

    Article  ADS  Google Scholar 

  7. J.R. Dunn, M. Fuller, J. Zoeger, J. Dobson, F. Heller, J. Hammann, E. Caine, B.M. Moskowitz, Magnetic material in the human hippocampus. Brain Res. Bull. 36(2), 149–153 (1995)

    Article  Google Scholar 

  8. J. Fock, L.K. Bogart, D. González-Alonso, J.I. Espeso, M.F. Hansen, M. Varón, C. Frandsen, Q.A. Pankhurst, On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57fe mössbauer spectroscopy. J. Phys. D: Appl. Phys 50(26), 265005 (2017)

    Article  ADS  Google Scholar 

  9. J. García-Otero, M. Porto, J. Rivas, A. Bunde, Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles. Phys. Rev. Lett. 84(1), 167–170 (2000)

    Article  ADS  Google Scholar 

  10. A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, Computationally efficient Markov chain simulation, chapter 12, 3rd edn. (CRC Press, Boca Raton, 2014), pp. 293–310

  11. B. Gleich, J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005)

    Article  ADS  Google Scholar 

  12. J.-M. Greneche, in The contribution of 57fe mössbauer spectrometry to investigate magnetic nanomaterials. Mössbauer Spectroscopy, chapter 4, 1st edn. (Springer, Berlin, Heidelberg, 2013), pp. 204–205

  13. D. Henrard, Q.L. Vuong, S. Delangre, X. Valentini, D. Nonclercq, M.F. Gonon, Y. Gossuin, Monitoring of superparamagnetic particle sizes in the langevin law regime. J. Nanomater. 64092101–64092109, 2019 (2019)

    Google Scholar 

  14. J.M. Hill, A.J. Dick, V.K. Raman, R.B. Thompson, Z.-X. Yu, K. Allison Hinds, Breno S.S. Pessanha, Michael A. Guttman, Timothy R. Varney, Bradley J. Martin, Cynthia E. Dunbar, Elliot R. McVeigh, Robert J. Lederman, Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108, 1009–1014 (2003)

    Article  Google Scholar 

  15. U. Himmelreich, T. Dresselaers, Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 48, 112–124 (2009)

    Article  Google Scholar 

  16. C.E. Hoppe, F. Rivadulla, M. Arturo López-Quintela, M. Carmen Buján, J. Rivas, D. Serantes, D. Baldomir, Effect of submicrometer clustering on the magnetic properties of free-standing superparamagnetic nanocomposites. J. Phys. Chem. C 112(34), 13099–13103 (2008)

    Article  Google Scholar 

  17. C. Hughes, J. Galea-Lauri, F. Farzaneh, D. Darling, Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors. Mol. Ther. 3(4), 623–629 (2001)

    Article  Google Scholar 

  18. P. Ilg, M. Kröger, Dynamics of interacting magnetic nanoparticles: effective behavior from competition between brownian and néel relaxation. Phys. Chem. Chem. Phys. 22, 22244–22259 (2020)

    Article  Google Scholar 

  19. A.O. Ivanov, S.S. Kantorovich, E.N. Reznikov, C. Holm, A.F. Pshenichnikov, A.V. Lebedev, A. Chremos, P.J. Camp, Magnetic properties of polydisperse ferrofluids: a critical comparison between experiment, theory, and computer simulation. Phys. Rev. E 75, 061405 (2007)

    Article  ADS  Google Scholar 

  20. D. Kechrakos, K.N. Trohidou, Magnetic properties of dipolar interacting single-domain particles. Phys. Rev. B 58(18), 12169–12178 (1998)

    Article  ADS  Google Scholar 

  21. S.J. Kemp, R. Matthew Ferguson, A.P. Khandhar, K.M. Krishnan, Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Adv. 6, 77452–77464 (2016)

    Article  ADS  Google Scholar 

  22. P. Langevin, Sur la théorie du magnétisme. Journal de physique théorique et appliquée 4(1), 678–693 (1905)

    Article  MATH  Google Scholar 

  23. J. Londoño-Navarro, J.C. Riaño-Rojas, E. Restrepo-Parra, Competition between anisotropy and dipolar interaction in multicore nanoparticles: Monte carlo simulation. DYNA 82(194), 66–71 (2015)

    Article  Google Scholar 

  24. I.T. Lucas, S. Durand-Vidal, E. Dubois, J. Chevalet, P. Turq, Surface charge density of maghemite nanoparticles: role of electrostatics in the proton exchange. J Phys. Chem. 111(50), 18568–18576 (2007)

    Google Scholar 

  25. M. Lévy, F. Gazeau, J.-C. Bacri, C. Wilhelm, M. Devaud, Modeling magnetic nanoparticle dipole-dipole interactions inside living cells. Phys. Rev. B 84(7), 075480-1–075480-11 (2011)

    Article  ADS  Google Scholar 

  26. M. Lévy, C. Wilhelm, M. Devaud, P. Levitz, F. Gazeau, How cellular processing of superparamagnetic nanoparticles affects their magnetic behavior and nmr relaxivity. Contrast Media Mol. Imaging 7, 373–383 (2012)

    Article  Google Scholar 

  27. M. Lévy, C. Wilhelm, N. Luciani, V. Deveaux, F. Gendron, Alain Luciani, Martin Devaud, Florence Gazeau, Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Nanoscale 3, 4402–4410 (2011)

    Article  ADS  Google Scholar 

  28. H. Mamiya, H. Fukumoto, J.L.C. Huaman, K. Suzuki, H. Miyamura, J. Balachandran, Estimation of magnetic anisotropy of individual magnetite nanoparticles for magnetic hyperthermia. ACS Nano 14(7), 8421–8432 (2020)

    Article  Google Scholar 

  29. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  MATH  ADS  Google Scholar 

  30. O. Mykhaylyk, T. Sobisch, I. Almstätter, Y. Sanchez-Antequera, S. Brandt, M. Anton, M. Döblinger, D. Eberbeck, M. Settles, R. Braren, D. Lerche, C. Plank, Silica-iron oxide magnetic nanoparticles modified for gene delivery: a search for optimum and quantitative criteria. Pharmac. Res. 29(5), 1344–1365 (2012)

    Article  Google Scholar 

  31. T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)

    Article  ADS  Google Scholar 

  32. L. Néel, Theory of the magnetic after-effect in ferromagnetics in the form of small particles, with applications to baked clays, chapter A69. (Gordon and Breach Science Publishers, 1988), pp. 407–427

  33. N. Ortiz-Gordoy, D.G. Agredo-Diaz, A.O. Garzón-Posada, C.A. Parra Vargas, D.A. Landínez Téllez, J. Roa-Rojas, A facile method to produce magnetic nanoparticles and its influence on their magnetic and physical properties. Mater. Lett. 293, 129700 (2021)

    Article  Google Scholar 

  34. J.M. Perez, F. Joseph Simeone, Y. Saeki, L. Josephson, R. Weissleder, Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 125, 10192–10193 (2003)

    Article  Google Scholar 

  35. O. Petracic, Superparamagnetic nanoparticle ensembles. Superlattices Microstruct. 47, 569–578 (2010)

    Article  ADS  Google Scholar 

  36. C. Plank, O. Zelphati, O. Mykhaylyk, Magnetically enhanced nucleic acid delivery ten years of magnetofection—progress and prospects. Adv. Drug Deliv. Rev. 63, 1300–1331 (2011)

    Article  Google Scholar 

  37. E.A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2(4), 041302 (2015)

    Article  ADS  Google Scholar 

  38. R. Qiao, C. Yang, M. Gao, Superparamagnetic iron oxide nanoparticles: from preparations to in vivo mri applications. J. Mater. Chem. 19, 6274–6293 (2009)

    Article  Google Scholar 

  39. M. Respaud, Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: deviation from langevin law. J. Appl. Phys. 86(1), 556–561 (1999)

    Article  ADS  Google Scholar 

  40. V.Y. Rudyak, S.L. Krasnolutskii, Dependence of the viscosity of nanofluids on nanoparticle size and material. Phys. Lett. A 378(26), 1845–1849 (2014)

    Article  ADS  Google Scholar 

  41. V. Russier, C. de Montferrand, Y. Lalatonne, L. Motte, Size and polydispersity effect on the magnetization of densely packed magnetic nanoparticles. J. Appl. Phys. 112(7), 0739261–07392611 (2012)

    Article  Google Scholar 

  42. V. Schaller, G. Wahnström, A. Sanz-Velasco, P. Enoksson, C. Johansson, Monte carlo simulation of magnetic multi-core nanoparticles. J. Magn. Magn. Mater. 321, 1400–1403 (2009)

    Article  ADS  Google Scholar 

  43. M. Shahsavari Alavijeh, M.S. Bani, I. Rad, S. Hatamie, M.S. Zomorod, M. Haghpanahi, Antibacterial properties of ferrimagnetic and superparamagnetic nanoparticles: a comparative study. J. Mech. Sci. Technol. 35(2), 815–821 (2021)

    Article  Google Scholar 

  44. M. Shliomis, Effective viscosity of magnetic suspensions. Sov. Phys. JETP 34, 1291–1294 (1972)

    ADS  Google Scholar 

  45. F. Tournus, A. Tamion, Magnetic susceptibility curves of a nanoparticle assembly ii. Simulation and analysis of zfc/fc curves in the case of a magnetic anisotropy energy distribution. J. Magn. Magn. Mater. 323, 1118–1127 (2011)

    Article  ADS  Google Scholar 

  46. K. Trohidou and M. Vasilakaki. Monte Carlo Studies of Magnetic Nanoparticles, chapter 20. (IntechOpen, New York, 2011), pp 513–538

  47. F. Vernay, Z. Sabsabi, O. Iglesias, H. Kachkachi, Surface effects on the magnetic behavior of nanoparticle assemblies. Phys. Rev. B 521, 012010 (2012)

    Google Scholar 

  48. Viscosity of chloroform. https://wiki.anton-paar.com/en/chloroform/. Accessed 15 Nov 2022

  49. Viscosity of toluene. https://wiki.anton-paar.com/en/toluene/. Accessed 15 Nov 2022

  50. Q.L. Vuong, P. Gillis, A. Roch, Y. Gossuin, Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review. WIREs Nanomed. Nanobiotechnol. 4 (2017)

  51. L. Wang, J. Ding, H.Z. Kong, Y. Li, Y.P. Feng, Monte carlo simulation of a cluster system with strong interaction and random anisotropy. Phys. Rev. B 64, 214410 (2011)

    Article  ADS  Google Scholar 

  52. F. Wiekhorst, U. Steinhoff, D. Eberbeck, L. Trahms, Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm. Res. 29, 1189–1202 (2012)

    Article  Google Scholar 

  53. C. Wilhelm, F. Gazeau, Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29, 3161–3174 (2008)

    Article  Google Scholar 

  54. R.C. Woodward, J. Heeris, T.GSt. Pierre, M. Saunders, E.P. Gilbert, M. Rutnakornpituk, Q. Zhang, S. Riffle, A comparison of methods for the measurement of the particle-size distribution of magnetic nanoparticles. J. Appl. Crystallogr. 40, s495–s500 (2007)

    Article  Google Scholar 

  55. M. Zhongquan, D. Chen, Z. He, Equilibrium magnetic properties of dipolar interacting ferromagnetic nanoparticles. J. Magn. Magn. Mater. 320, 2335–2338 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sophie Laurent from the University of Mons for the access to the Dynamic Light Scattering equipment. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.

Funding

This work was supported by University of Mons (UMONS).

Author information

Authors and Affiliations

Authors

Contributions

ÉM: methodology, software, validation, investigation, formal analysis, data curation, writing, and visualization. SB and SK: TEM imaging of the experimental sample. YG: conceptualization, methodology, data curation, resources, and supervision. QLV: conceptualization, methodology, software, validation, and supervision.

Corresponding author

Correspondence to Éléonore Martin.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 565 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, É., Gossuin, Y., Bals, S. et al. Monte Carlo simulations of the magnetic behaviour of iron oxide nanoparticle ensembles: taking size dispersion, particle anisotropy, and dipolar interactions into account. Eur. Phys. J. B 95, 201 (2022). https://doi.org/10.1140/epjb/s10051-022-00468-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00468-w

Navigation