Skip to main content
Log in

Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moiré superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    Article  ADS  Google Scholar 

  2. C. Castellani, C. DiCastro, and P. A. Lee, Metallic phase and metal-insulator transition in two-dimensional electronic systems, Phys. Rev. B 57(16), R9381 (1998)

    Article  ADS  Google Scholar 

  3. K. F. Mak, D. Xiao, and J. Shan, Light-valley interactions in 2D semiconductors, Nat. Photonics 12(8), 451 (2018)

    Article  ADS  Google Scholar 

  4. J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)

    Article  ADS  Google Scholar 

  5. H. M. Hill, A. F. Rigosi, C. Roquelet, A. Chernikov, T. C. Berkelbach, D. R. Reichman, M. S. Hybertsen, L. E. Brus, and T. F. Heinz, Observation of excitonic Rydberg states in mono-layer MoS2 and WS2 by photoluminescence excitation spectroscopy, Nano Lett. 15(5), 2992 (2015)

    Article  ADS  Google Scholar 

  6. D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)

    Article  ADS  Google Scholar 

  7. Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, and W. Yao, Topological mosaics in moiré superlattices of van der Waals heterobilayers, Nat. Phys. 13(4), 356 (2017)

    Article  Google Scholar 

  8. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)

    Article  ADS  Google Scholar 

  9. K. Seyler, P. Rivera, H. Yu, N. Wilson, E. Ray, D. Mandrus, J. Yan, W. Yao, and X. Xu, Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers, Nature 567(7746), 66 (2019)

    Article  ADS  Google Scholar 

  10. T. Cai, S. A. Yang, X. Li, F. Zhang, J. Shi, W. Yao, and Q. Niu, Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides, Phys. Rev. B 88(11), 115140 (2013)

    Article  ADS  Google Scholar 

  11. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  12. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2, ACS Nano 4(5), 2695 (2010)

    Article  Google Scholar 

  13. J. E. Padilha, H. Peelaers, A. Janotti, and C. G. Van de Walle, Nature and evolution of the band-edge states in MoS2: From monolayer to bulk, Phys. Rev. B 90(20), 205420 (2014)

    Article  ADS  Google Scholar 

  14. H. M. Dong, S. D. Guo, Y. F. Duan, F. Huang, W. Xu, and J. Zhang, Electronic and optical properties of single-layer MoS2, Front. Phys. 13(4), 137307 (2018)

    Article  ADS  Google Scholar 

  15. X. Z. Zhang, R. Y. Zhang, Y. Zhang, T. Jiang, C. Y. Deng, X. A. Zhang, and S. Q. Qin, Tunable photoluminescence of bilayer MoS2 via interlayer twist, Opt. Mater. 94, 213 (2019)

    Article  ADS  Google Scholar 

  16. M. Xia, B. Li, K. Yin, G. Capellini, G. Niu, Y. Gong, W. Zhou, P. M. Ajayan, and Y. H. Xie, Spectroscopic signatures of AA′ and AB stacking of chemical vapor deposited bilayer MoS2, ACS Nano 9(12), 12246 (2015)

    Article  Google Scholar 

  17. A. M. van der Zande, J. Kunstmann, A. Chernikov, D. A. Chenet, Y. M. You, X. X. Zhang, P. Y. Huang, T. C. Berkelbach, L. Wang, F. Zhang, M. S. Hybertsen, D. A. Muller, D. R. Reichman, T. F. Heinz, and J. C. Hone, Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist, Nano Lett. 14(7), 3869 (2014)

    Article  ADS  Google Scholar 

  18. C. Wang, W. Xu, H. Mei, H. Qin, X. Zhao, C. Zhang, H. F. Yuan, J. Zhang, Y. Xu, P. Li, and M. Li, Substrate-induced electronic localization in monolayer MoS2 measured via terahertz spectroscopy, Opt. Lett. 44(17), 4139 (2019)

    Article  ADS  Google Scholar 

  19. H. Wen, W. Xu, C. Wang, D. Song, H. Y. Mei, J. Zhang, and L. Ding, Magneto-optical properties of monolayer MoS2-SiO2/Si structure measured via terahertz time-domain spectroscopy, Nano Select 2(1), 90 (2021)

    Article  Google Scholar 

  20. S. Kumar, A. Singh, S. Kumar, A. Nivedan, M. Tondusson, J. Degert, J. Oberle, S. J. Yun, Y. H. Lee, and E. Freysz, Enhancement in optically induced ultrafast THz response of MoSe2–MoS2 heterobilayer, Opt. Express 29(3), 4181 (2021)

    Article  ADS  Google Scholar 

  21. M. Bala Murali Krishna, J. Madéo, J. P. Urquizo, X. Zhu, S. Vinod, C. S. Tiwary, P. M. Ajayan, and K. M. Dani, Terahertz photoconductivity and photocarrier dynamics in few-layer hBN/WS2 van der Waals heterostructure laminates, Semicond. Sci. Technol. 33(8), 084001 (2018)

    Article  ADS  Google Scholar 

  22. M. Liao, Z. Wei, L. Du, Q. Wang, J. Tang, H. Yu, F. Wu, J. Zhao, X. Xu, B. Han, K. Liu, P. Gao, T. Polcar, Z. Sun, D. Shi, R. Yang, and G. Zhang, Precise control of the interlayer twist angle in large scale MoS2 homostructures, Nat. Commun. 11(1), 2153 (2020)

    Article  ADS  Google Scholar 

  23. H. Yu, M. Liao, W. Zhao, G. Liu, X. J. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng, S. Zhou, J. A. Shi, L. Gu, C. Shen, T. Zhang, L. Du, L. Xie, J. Zhu, W. Chen, R. Yang, D. Shi, and G. Zhang, Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films, ACS Nano 11(12), 12001 (2017)

    Article  Google Scholar 

  24. Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films, Sci. Rep. 3(1), 1866 (2013)

    Article  ADS  Google Scholar 

  25. X. Wang, H. Feng, Y. Wu, and L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition, J. Am. Chem. Soc. 135(14), 5304 (2013)

    Article  Google Scholar 

  26. Q. Q. Wang, J. Tang, X. M. Li, J. P. Tian, J. Liang, N. Li, D. P. Ji, L. D. Xian, Y. T. Guo, L. Li, Q. H. Zhang, Y. B. Chu, Z. Wei, Y. C. Zhao, L. J. Du, H. Yu, X. D. Bai, L. Gu, K. H. Liu, W. Yang, R. Yang, D. X. Shi, and G. Y. Zhang, Layer-by-layer epitaxy of multi-layer MoS2 wafers, Natl. Sci. Rev. 9(6), nwac077 (2022)

    Article  Google Scholar 

  27. H. Sajjad, A. S. Muhmmad, V. Dhanasekaran, Z. I. Muhmmad, S. Jai, F. K. Muhmmad, E. Jonghwa, S. Yongho, and J. Jongwan, Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition, J. Alloys Compd. 653(25), 369 (2015)

    Google Scholar 

  28. C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2, Phys. Rev. B 88(12), 121301 (2013)

    Article  ADS  Google Scholar 

  29. F. Ullah, J. H. Lee, Z. Tahir, A. Samad, C. T. Le, J. Kim, D. Kim, M. U. Rashid, S. Lee, K. Kim, H. Cheong, J. I. Jang, M. J. Seong, and Y. S. Kim, Selective growth and robust valley polarization of bilayer 3R-MoS2, ACS Appl, Mater. & Inter. 13(48), 57588 (2021)

    Article  Google Scholar 

  30. J. K. Ellis, M. J. Lucero, and G. E. Scuseria, The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory, Appl. Phys. Lett. 99(26), 261908 (2011)

    Article  ADS  Google Scholar 

  31. S. Bhattacharyya and A. K. Singh, Semiconductor-metal transition in semiconducting bilayer sheets of transition- metal dichalcogenides, Phys. Rev. B 86(7), 075454 (2012)

    Article  ADS  Google Scholar 

  32. P. L. Christiansen, M. P. Srensen, and A. C. Scott, Nonlinear Science at the Dawn of the 21st Century, Berlin, Heidelberg: Springer, 2000

    Book  Google Scholar 

  33. M. Hangyo, T. Nagashima, and S. Nashima, Spectroscopy by pulsed terahertz radiation, Meas. Sci. Technol. 13(11), 1727 (2002)

    Article  ADS  Google Scholar 

  34. L. Duvillaret, F. Garet, and J. L. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE J. Sel. Top. Quantum Electron. 2(3), 739 (1996)

    Article  ADS  Google Scholar 

  35. S. Nudelman and S. S. Mitra, Optical Properties of Solids, Springer, 1969

  36. M. Tinkham, Energy gap interpretation of experiments on infrared transmission through superconducting films, Phys. Rev. 104(3), 845 (1956)

    Article  ADS  Google Scholar 

  37. J. D. Jackson, Classical Electrodynamics, 3rd Ed., Wiley, 1998

  38. P. Drude, Bestimmung der optischen Constanten der Metalle, Annalen der Physik 275(4), 481 (1890)

    Article  ADS  MATH  Google Scholar 

  39. N. V. Smith, Classical generalization of the Drude formula for the optical conductivity, Phys. Rev. B 64(15), 155106 (2001)

    Article  ADS  Google Scholar 

  40. F. W. Han, W. Xu, L. L. Li, and C. Zhang, A generalization of the Drude-Smith formula for magneto-optical conductivities in Faraday geometry, J. Appl. Phys. 119(24), 245706 (2016)

    Article  ADS  Google Scholar 

  41. A. Mukhopadhyay, S. Kanungo, and H. Rahaman, The effect of the stacking arrangement on the device behavior of bilayer MoS2 FETs, J. Comput. Electron. 20(1), 161 (2021)

    Article  Google Scholar 

  42. B. Baugher, H. Churchill, Y. Yang, and P. Jarillo-Herrero, Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2, Nano Lett. 13(9), 4212 (2013)

    Article  ADS  Google Scholar 

  43. D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, and M. Anni, Temperature dependence of the photo-luminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix, Phys. Rev. B 71(23), 235409 (2005)

    Article  ADS  Google Scholar 

  44. W. Xu, F. M. Peeters, and T. C. Lu, Dependence of resistivity on electron density and temperature in graphene, Phys. Rev. B 79(7), 073403 (2009)

    Article  ADS  Google Scholar 

  45. S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J. B. Yoo, J. Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals, Nat. Commun. 3(1), 1011 (2012)

    Article  ADS  Google Scholar 

  46. H. Schwarz, Laser Interaction and Related Plasma Phenomena, US: Springer, 1972

    Book  Google Scholar 

  47. W. Xu, H. M. Dong, L. L. Li, J. Q. Yao, P. Vasilopoulos, and F. M. Peeters, Optoelectronic properties of graphene in the presence of optical phonon scattering, Phys. Rev. B 82(12), 125304 (2010)

    Article  ADS  Google Scholar 

  48. W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te), Phys. Rev. B 85(3), 033305 (2012)

    Article  ADS  Google Scholar 

  49. E. Scalise, M. Houssa, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, First-principles study of strained 2D MoS2, Physica E 56, 416 (2014)

    Article  ADS  Google Scholar 

  50. H. M. Dong, Z. H. Tao, L. L. Li, F. Huang, W. Xu, and F. M. Peeters, Substrate dependent terahertz response of monolayer WS2, Appl. Phys. Lett. 116(20), 203108 (2020)

    Article  ADS  Google Scholar 

  51. H. M. Dong, W. Xu, Z. Zeng, T. C. Lu, and F. M. Peeters, Quantum and transport conductivities in monolayer graphene, Phys. Rev. B 77(23), 235402 (2008)

    Article  ADS  Google Scholar 

  52. S. H. Zhang, W. Xu, S. M. Badalyan, and F. M. Peeters, Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate, Phys. Rev. B 87(7), 075443 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. U2230122 and U2067207) and Shenzhen Science and Technology Program (No. KQTD20190929173954826). The numerical calculations in this work were conducted at Hefei advanced computing center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Xu.

Additional information

Conflicts of interest

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Xu, W., Wen, H. et al. Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy. Front. Phys. 18, 53303 (2023). https://doi.org/10.1007/s11467-023-1295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1295-1

Keywords

Navigation