Skip to main content

Superconducting Quantum Detector for Astronomy and X -Ray Spectroscopy

  • Conference paper
International Workshop on Superconducting Nano-Electronics Devices

Abstract

We propose the novel concept of ultra-sensitive energy-dispersive superconducting quantum detectors prospective for applications in astronomy and X-ray spectroscopy. Depending on the superconducting material and operation conditions, such detector may allow realizing background limited noise equivalent power 10−21 W Hz−1/2 in the terahertz range when exposed to 4-K background radiation or counting of 6-keV photon with almost 10—4 energy resolution. Planar layout and relatively simple technology favor integration of elementary detectors into a detector array.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. A.D. Semenov, G.N. Gol’tsman, and A.A. Korneev, Quantum detection by current carrying superconducting film,Physica C 351,349 (2001).

    Article  ADS  Google Scholar 

  2. G. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Dzardanov, K. Smirnov, A. Semenov, B. Voronov, C. Williams, and Roman Sobolewski, Fabrication and properties of an ultrafast NbN hot-electron single-photon detector, Presented at the Applied Superconductivity Conference ASC2000, Virginia Beach, VA, USA, September 2000, to appear in the IEEE Transactions on Applied Superconductivity.

    Google Scholar 

  3. A. Verevkin, Z.Xu. Zheng, C. Williams, R. Sobolewski, O. Okunev, K. Smirnov, G. Chulkova, A. Korneev, A. Lipatov, and G.N. Gol’tsman, Superconducting NbN-based ultrafast hot-electron single-photon detector for infrared range, presented at the 12th International Symposium on Space Terahertz Technology, February 2001, San Diego, USA.

    Google Scholar 

  4. D.E. McCumber and B.I. Halperin, Time scale of intrinsic resistive fluctuations in thin superconducting wires, Phys. Rev. Bl, 1054 (1970).

    ADS  Google Scholar 

  5. M. Kurakado, Possibility of high resolution detectors using superconducting tunnel junctions, Nucl. Instr. and Meth. 196,275(1982).

    Article  ADS  Google Scholar 

  6. C.P. Poole, H.A. Farach, R.J. Creswick, Superconductivity, Academic Press, New York 1995, ISBN 0-12-561455-1.

    Google Scholar 

  7. B. Altshuler and A. Aronov, Electron-Electron Interaction in Disordered Systems, North Holland, Amsterdam 1985.

    Google Scholar 

  8. A.D. Semenov, H.-W. Hübers, J. Schubert, G.N. Gol’tsman, A.I. Elantiev, B.M. Voronov, and E.M. Gershenzon, Design and performance of the lattice-cooled hot-electron terahertz mixer, J. Appl. Phys 88, 6758 (2000).

    Article  ADS  Google Scholar 

  9. D. Chouvaev, L. Kuzmin, M. Tarasov, Normal-metal hot-electron microbolometer with on-chip protection by tunnel junctions, Supercond. Sci. Technol. 12, 985 (1999);

    Article  ADS  Google Scholar 

  10. B.S. Karasik, W.R. MacGrath, M.E. Gershenson, and A.V. Sergeev, Photon-noise-limited direct detector based on disorder-controlled electron heating, Journal of Applied Physics 87, 7586 (2000).

    Article  ADS  Google Scholar 

  11. G. B. Heim, M. L. Henderson, K. MacFeely, T. J. McMahon, D. Michika, R. J. Pearson, G. H. Rieke, J. P. Schwenker, D. W. Strecker, C. Thompson, R. M. Warden, D. A. Wilson, and E. T. Young, Multiband Imaging Photometer for SIRTF Interstellar dust, MIPS Report 1996, http://mips.as.arizona.edu/MIPS/Instrument_f.html.

    Google Scholar 

  12. Th. Nussbaumer, Ph. Lerch, E. Kirk, A. Zehnder, R. Füchslin, P.F. Meier, and H.R. Ott, Quasiparticle diffusion in tantalum using superconducting tunnel junctions, Phys. Rev. B61, 9719 (2000);

    ADS  Google Scholar 

  13. S. Friedrich, K. Segall, M.C. Gaidis, CM. Wilson, D.E. Prober, A.E. Szymkowiak, and S.H. Moseley, Experimental quasiparticle dynamics in a superconducting imaging x-ray spectrometer, Appl. Phys. Lett. 71,39901(1997).

    Article  Google Scholar 

  14. K.D. Irwin, An application of electrothermal feedback for high resolution cryogenic particle detectors, Appl. Phys. Lett. 66, 1998(1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this paper

Cite this paper

Semenov, A.D., Hübers, HW., Gol’tsman, G.N., Smirnov, K. (2002). Superconducting Quantum Detector for Astronomy and X -Ray Spectroscopy. In: Pekola, J., Ruggiero, B., Silvestrini, P. (eds) International Workshop on Superconducting Nano-Electronics Devices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0737-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0737-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5217-4

  • Online ISBN: 978-1-4615-0737-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics