Skip to main content

Advertisement

Log in

Infrastructure for Intelligent Automation Services in the Smart Grid

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The electricity grid is undergoing a radical transformation from a production-driven to a demand-driven energy delivery platform known as the smart grid. The integration of a large amount of renewable and distributed energy resources, together with new patterns of electricity production, accentuates the need for research in information and communication technologies to control bi-directional energy flows. The European FP7 project: “Energy Demand Aware Open Services for Smart Grid Intelligent Automation” is contributing to this research by providing an intelligent infrastructure for service deployment for the smart grid. The project defines a system architecture that provides interoperability between wireless sensors in home area networks connected over the Internet to a service provider function deployed in a cloud infrastructure. A key component in this infrastructure is the Home Energy Controlling Hub that, on the one hand, provides a platform for monitoring and aggregation of electricity consumption data from devices and appliances and, on the other hand, is the link between the deployed intelligent automation services and the home. To ensure openness and simplicity, the proposed infrastructure is based on the representational state transfer style architecture. This is adopted by implementing the emerging ZigBee IP and Smart Energy Profile 2.0 standards that to a wide extend conform with the Internet Protocol suite and state-of-the art web services development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moslehi, K., & Kumar, R. (2010). A reliability perspective of the smart grid. IEEE Transactions on Smart Grid, 1(1), 57–64.

    Article  Google Scholar 

  2. Kailas, A., Cecchi, V., & Mukherjee, A. (2013). Chapter 2—A survey of contemporary technologies for smart home energy management. Handbook of green information and communication systems (pp. 35–56). New York: Academic Press.

  3. Papazoglou, M. P. (2003). Service-oriented computing: Concepts, characteristics and directions. In 2003 Proceedings of the fourth international conference on Web information, systems engineering (pp. 3–12).

  4. Rusitschka, S., Eger, K., & Gerdes, C. (2010). Smart grid data cloud: A model for utilizing cloud computing in the smart grid domain. In 2010 first IEEE international conference on smart grid, communications (pp. 483–488).

  5. Gomez, C., & Paradells, J. (2010). Wireless home automation networks: A survey of architectures and technologies. IEEE Communications Magazine, 48(6), 92–101.

    Article  Google Scholar 

  6. Sauter, T., & Lobashov, M. (2011). End-to-end communication architecture for smart grids. IEEE Transactions on Industrial Electronics, 58(4), 1218–1228.

    Article  Google Scholar 

  7. Baker, F., & Meyer, D. (June 2011). Internet protocols for the smart grid. Internet Society, RFC 6272.

  8. Zigbee ip specification. Technical report, ZigBee Alliance, 2013.

  9. Ieee standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications for low-rate wireless personal area networks (wpans), 2006. IEEE Std 802.15.4-2006.

  10. Zigbee specification (version 2). Technical Report Document 053474r17, ZigBee Alliance, January 17 2008.

  11. Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (Sept. 2007). Transmission of ipv6 packets over ieee 802.15.4 networks. Internet Society, RFC 4944.

  12. Shelby, Z., Chakrabarti, S., Nordmark, E., & Bormann, C. (Nov. 2012). Neighbor discovery optimization for ipv6 over low-power wireless personal area networks (6lowpans). Internet Society, RFC 6775.

  13. Islam, S., & Grégoire, J.-C. (2010). Network edge intelligence for the emerging next-generation internet. Future Internet, 2(4), 603–623.

    Article  Google Scholar 

  14. Postel, J. (Aug. 1980). User datagram protocol. Internet Society, RFC 768.

  15. Postel, J. (Sept. 1981). Transmission control protocol. Internet Society, RFC 793.

  16. Conta, A., Deering, S., & Gupta, M. (March 2006). Internet control message protocol (icmpv6) for the internet protocol version 6 (ipv6) specification. Internet Society, RFC 4443.

  17. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., et al. (2012). Rpl: Ipv6 routing protocol for low-power and lossy networks. Internet Society, RFC 6550.

  18. Dierks, T., & Rescorla, E. (Aug. 2008). The transport layer security (tls) protocol version 1.2. Internet Society, RFC 5246.

  19. Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., & Yegin, A. (May 2008). Protocol for carrying authentication for network access (pana). Internet Society, RFC 5191.

  20. Cheshire, S., & Krochmal, M. (Feb. 2013). Multicast dns. Internet Society, RFC 6762.

  21. Cheshire, S., & Krochmal, M. (Feb. 2013). Dns-based service discovery. Internet Society, RFC 6763.

  22. Kelsey, R. K. (2013). Mesh link establishment. Internet Society, draft-kelsey-interea-mesh-link-establishment-05.

  23. Huston, G., & Michaelson, G. (May 2008). Measuring ipv6 deployment. In RIPE 56 meeting May 2008, Retrieved 2013-06-10.

  24. Nordmark, E., & Gilligan, R. (Oct. 2005). Basic transition mechanisms for ipv6 hosts and routers. Internet Society, RFC 4213.

  25. Mackay, M., Edwards, C., Dunmore, M., Chown, T., & Carvalho, G. (2003). A scenario-based review of ipv6 transition tools. IEEE Internet Computing, 7(3), 27.

    Article  Google Scholar 

  26. Jacobsen, R., Toftegaard, T. S., & Kjærgaard, J. K. (2011). IP connected low power wireless personal area networks in the future internet (pp. 191–213). Technologies and protocols for future internet design: Reinventing the Web. IGI Global.

  27. Hui, J., & Vasseur, J. P. (March 2012). The routing protocol for low-power and lossy networks (rpl) option for carrying rpl information in data-plane datagrams. Internet Society, RFC 6553.

  28. Hui, J. W., & Culler, D. E. (2010). Ipv6 in low-power wireless networks. Proceedings of the IEEE, 98(11), 1865–1878.

    Article  Google Scholar 

  29. Vasseur, J. P., Kim, M., Pister, K., Dejean, N., & Barthel, D. (March 2012). Routing metrics used for path calculation in low-power and lossy networks. Internet Society, RFC 6551.

  30. Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., & Levkowetz, H. (June 2004). Extensible authentication protocol (eap). Internet Society, RFC 3748.

  31. Simon, D., Aboba, B., & Hurst, R. (March 2008). The eap-tls authentication protocol. Internet Society, RFC 5216.

  32. Rescorla, E. (May 2000). Http over tls. Internet Society, RFC 2818.

  33. Rescorla, E., & Modadugu, N. (Jan. 2012). Datagram transport layer security version 1.2. Internet Society, RFC 6347.

  34. Berners-Lee, T., Fielding, R., & Masinter, L. (Jan. 2005). Uniform resource identifier (uri): Generic syntax. Internet Society, RFC 3986.

  35. Richardson, L., & Ruby, S. (2007). Restful web services (1st ed). Sebastopol: O’Reilly.

  36. Shelby, Z., Hartke, K., Bormann, C., & Frank, B. (April 2013). Constrained application protocol (coap). Internet Society, draft-ietf-core-coap-15.

  37. Energy management system application program interface (ems-api)—part 301: Common information model (cim) base. Standard IEC61970-301:2013, International Electrotechnical Commission (IEC), 2013.

  38. Smart energy profile 2 application protocol standard. Technical Report Document 13-0200-00, ZigBee Alliance, 2013.

  39. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., & Polk, W. (May 2008). Internet x.509 public key infrastructure certificate and certificate revocation list (crl) profile. Internet Society, RFC 5280.

  40. Smart energy profile 2.0 uml model, November 2008. ZigBee Alliance, Document 13-0201.

  41. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., et al. (June 1999). Hypertext transfer protocol—http/1.1, Internet Society, RFC 2616.

  42. Extensible markup language (xml) 1.0 (5th ed.). Technical report, World Wide Web Consortium (W3C), November 2008.

  43. Efficient xml interchange (exi) format 1.0. Technical report, World Wide Web Consortium (W3C), March 2011.

  44. Crockford, D. (July 2006). The application/json media type for javascript object notation (json). Internet Society, RFC 4627.

  45. Web application description language. Technical report, World Wide Web Consortium (W3C), August 2009.

  46. W3c xml schema definition language. Technical report, World Wide Web Consortium (W3C), April 5 2012.

Download references

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework programme (FP7/2007-2013) under Grant Agreement N\(^{\circ }\) 317761.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Hylsberg Jacobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, R.H., Mikkelsen, S.A. Infrastructure for Intelligent Automation Services in the Smart Grid. Wireless Pers Commun 76, 125–147 (2014). https://doi.org/10.1007/s11277-014-1682-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1682-6

Keywords

Navigation