Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Clonal evolution of acute leukemia genomes

Abstract

In large part, cancer results from the accumulation of multiple mutations in a single cell lineage that are sequentially acquired and subject to an evolutionary process where selection drives the expansion of more fit subclones. Owing to the technical challenge of distinguishing and isolating distinct cancer subclones, many aspects of this clonal evolution are poorly understood, including the diversity of different subclones in an individual cancer, the nature of the subclones contributing to relapse, and the identity of pre-cancerous mutations. These issues are not just important to our understanding of cancer biology, but are also clinically important given the need to understand the nature of subclones responsible for the refractory and relapsed disease that cause significant morbidity and mortality in patients. Recently, advanced genomic techniques have been used to investigate clonal diversity and evolution in acute leukemia. Studies of pediatric acute lymphoblastic leukemia (ALL) demonstrated that in individual patients there are multiple genetic subclones of leukemia-initiating cells, with a complex clonal architecture. Separate studies also investigating pediatric ALL determined that the clonal basis of relapse was variable and complex, with relapse often evolving from a clone ancestral to the predominant de novo leukemia clone. Additional studies in both ALL and acute myeloid leukemia have identified pre-leukemic mutations in some individual cases. This review will highlight these recent reports investigating the clonal evolution of acute leukemia genomes and discuss the implications for clinical therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Stratton MR . Exploring the genomes of cancer cells: progress and promise. Science 2011; 331: 1553–1558.

    Article  CAS  PubMed  Google Scholar 

  2. Stratton MR, Campbell PJ, Futreal PA . The cancer genome. Nature 2009; 458: 719–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Link DC, Schuettpelz LG, Shen D, Wang J, Walter MJ, Kulkarni S et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. Jama 2011; 305: 1568–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Welch JS, Westervelt P, Ding L, Larson DE, Klco JM, Kulkarni S et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. Jama 2011; 305: 1577–1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vogelstein B, Kinzler KW . The multistep nature of cancer. Trends Genet 1993; 9: 138–141.

    Article  CAS  PubMed  Google Scholar 

  6. Nowell PC . The clonal evolution of tumor cell populations. Science 1976; 194: 23–28.

    Article  CAS  PubMed  Google Scholar 

  7. Estey E, Dohner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  PubMed  Google Scholar 

  8. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    Article  CAS  PubMed  Google Scholar 

  9. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  10. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children′s Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  11. Mrozek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD . Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 2007; 109: 431–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  13. Gilliland DG, Jordan CT, Felix CA . The molecular basis of leukemia. Hematology Am Soc Hematol Educ Program 2004; 80–97.

    Article  Google Scholar 

  14. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008; 456: 66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009; 106: 19096–19101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461: 272–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43: 309–315.

    Article  CAS  PubMed  Google Scholar 

  20. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  21. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  PubMed  Google Scholar 

  22. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  24. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  25. Walter MJ, Payton JE, Ries RE, Shannon WD, Deshmukh H, Zhao Y et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci USA 2009; 106: 12950–12955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  PubMed  Google Scholar 

  27. Mullighan CG, Zhang J, Kasper LH, Lerach S, Payne-Turner D, Phillips LA et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature 2011; 471: 235–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  PubMed  Google Scholar 

  29. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003; 3: 639–649.

    Article  CAS  PubMed  Google Scholar 

  30. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011; 469: 362–367.

    Article  CAS  PubMed  Google Scholar 

  31. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008; 322: 1377–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuster L, Grausenburger R, Fuka G, Kaindl U, Krapf G, Inthal A et al. ETV6/RUNX1-positive relapses evolve from an ancestral clone and frequently acquire deletions of genes implicated in glucocorticoid signaling. Blood 2011; 117: 2658–2667.

    Article  CAS  PubMed  Google Scholar 

  33. van Delft FW, Horsley S, Colman S, Anderson K, Bateman C, Kempski H et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 2011; 117: 6247–6254.

    Article  CAS  PubMed  Google Scholar 

  34. Yang JJ, Bhojwani D, Yang W, Cai X, Stocco G, Crews K et al. Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia. Blood 2008; 112: 4178–4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  36. Greaves M . Darwin and evolutionary tales in leukemia. The Ham-Wasserman Lecture. Hematology Am Soc Hematol Educ Program 2009; 3–12.

    Article  Google Scholar 

  37. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008; 321: 1801–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467: 1114–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greaves M . Pre-natal origins of childhood leukemia. Rev Clin Exp Hematol 2003; 7: 233–245.

    CAS  PubMed  Google Scholar 

  40. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319: 336–339.

    Article  CAS  PubMed  Google Scholar 

  41. Castor A, Nilsson L, Astrand-Grundstrom I, Buitenhuis M, Ramirez C, Anderson K et al. Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 2005; 11: 630–637.

    Article  CAS  PubMed  Google Scholar 

  42. Bateman CM, Colman SM, Chaplin T, Young BD, Eden TO, Bhakta M et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood 2010; 115: 3553–3558.

    Article  CAS  PubMed  Google Scholar 

  43. Weissman I . Stem cell research: paths to cancer therapies and regenerative medicine. Jama 2005; 294: 1359–1366.

    Article  CAS  PubMed  Google Scholar 

  44. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG et al. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA 2009; 106: 3925–3929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  47. Nilsson L, Astrand-Grundstrom I, Anderson K, Arvidsson I, Hokland P, Bryder D et al. Involvement and functional impairment of the CD34(+)CD38(−)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8. Blood 2002; 100: 259–267.

    CAS  PubMed  Google Scholar 

  48. Cloos J, Goemans BF, Hess CJ, van Oostveen JW, Waisfisz Q, Corthals S et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia 2006; 20: 1217–1220.

    Article  CAS  PubMed  Google Scholar 

  49. Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood 2010; 115: 2003–2007.

    Article  CAS  PubMed  Google Scholar 

  50. Quivoron C, Couronne L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011; 20: 25–38.

    CAS  PubMed  Google Scholar 

  51. Jan M, Chao MP, Cha AC, Alizadeh AA, Gentles AJ, Weissman IL et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci USA 2011; 108: 5009–5014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H et al. TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 2010; 7: 708–717.

    Article  CAS  PubMed  Google Scholar 

  53. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs Jr KD et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138: 286–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood 2010; 115: 1976–1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Ryan Corces-Zimmerman for critical review of the manuscript. MJ is supported by the Lucille P Markey Biomedical Research Fellowship and the National Science Foundation Graduate Research Fellowship. RM holds a career award for medical scientists from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Majeti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jan, M., Majeti, R. Clonal evolution of acute leukemia genomes. Oncogene 32, 135–140 (2013). https://doi.org/10.1038/onc.2012.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.48

Keywords

This article is cited by

Search

Quick links