Skip to main content
Log in

Evaluation of the Potential In Vitro Antiproliferative Effects of Millimeter Waves at Some Therapeutic Frequencies on RPMI 7932 Human Skin Malignant Melanoma Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The potential antiproliferative effects of low power millimeter waves (MMWs) at 42.20 and 53.57 GHz on RPMI 7932 human skin melanoma cells were evaluated in vitro in order to ascertain if these two frequencies, comprised in the range of frequency used in millimeter wave therapy, would have a similar effect when applied in vivo to malignant melanoma tumours. Cells were exposed for 1 h exposure/day and to repeated exposure up to a total of four treatments. Plane wave incident power densities <1 mW/cm2 were used in the MMWs-exposure experiments so that the radiations did not cause significant thermal effects. Numerical simulations of Petri dish reflectivity were made using the equations for the reflection coefficient of a multilayered system. Such analysis showed that the power densities transmitted into the aqueous samples were ≤0.3 mW/cm2. Two very important and general biological endpoints were evaluated in order to study the response of melanoma cells to these radiations, i.e. cell proliferation and cell cycle. Herein, we show that neither cell doubling time nor the cell cycle of RPMI 7932 cells was affected by the frequency of the GHz radiation and duration of the exposure, in the conditions above reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belyaev, I. (2005). Non-thermal biological effects of microwaves. Microwave Review, 11, 13–29.

    Google Scholar 

  2. Pakhomov, A. G., Akyel, Y., Pakhomova, O. N., Stuck, B. E., & Murphy, M. R. (1998). Current state and implications of research on biological effects of millimeter waves: A review of the literature. Bioelectromagnetics, 19, 393–413.

    Article  PubMed  CAS  Google Scholar 

  3. Postow, E., & Swicord, L. (1996). Window effects in the millimeter-wave region. In C. Polk & E. Postow (Eds.), Handbook of biological effects of electromagnetic fields (2nd ed., pp. 537–541). CRC Press LLC, Boca Raton.

    Google Scholar 

  4. Belyaev, I. Y., Shcheglov, V. S., Alipov, E. D., & Ushakov, V. D. (2000). Nonthermal effects of extremely high-frequency microwaves on chromatin conformation in cells in vitro—Dependence on physical, physiological, and genetic factors. IEEE Transactions on Microwave Theory and Techniques, 48(11), 2172–2179.

    Article  CAS  Google Scholar 

  5. Beneduci, A. (2008). Review on the mechanisms of interaction between millimeter waves and biological systems. In M. E. Bernstain (Ed.), Bioelectrochemistry Research Developments (pp. 35–80). New York: Novascience Publishers Inc.

    Google Scholar 

  6. Webbs, S. J., & Dodds, D. (1968). Inhibition of bacterial cell growth by 136 gc microwaves. Nature, 218, 374–375.

    Article  Google Scholar 

  7. Devyatkov, N. D. (ed.). (1983). Nonthermal effects of millimeter irradiation on biological objects. Acad Sci USSR, Inst Radiotech Electrotech Moscow (in Russian).

  8. Sevastyanova, L. A., & Vilenskaya, R. L. (1974). A study of the effect of millimeter-band microwaves on the bone marrow of mice. Sov Phis-Usp, 16, 570–579 (Engl Transl).

    Article  Google Scholar 

  9. Grundler, W., & Keilmann, F. (1983). Sharp resonances in yeast growth prove non-thermal sensitivity to microwaves. Physical Review Letters, 51, 1214–1216.

    Article  Google Scholar 

  10. Grundler, W., Jentzsch, U., Keilmann, F., & Putterlik, V. (1988). Resonant cellular effects of low intensity microwaves. In H. Frohlich & F. Kremer (Eds.), Biological coherence and response to external stimuli (pp. 65–85). Berlin: Springer-Verlag.

    Google Scholar 

  11. Grundler, W., & Kaiser, F. (1992). Experimental evidence for coherent excitations correlated with cell growth. Nanobiology, 1, 163–176.

    Google Scholar 

  12. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2008). Extremely high frequency electromagnetic radiation enforces bacterial effects of inhibitors and antibiotics. Cell Biochemistry and Biophysics, 51, 97–103.

    Article  PubMed  CAS  Google Scholar 

  13. Betskii, O. V., Devyatkov, N. D., & Kislov, V. V. (2000). Low intensity millimeter waves in medicine and biology. Critical Reviews in Biomedical Engineering, 28, 247–268.

    PubMed  CAS  Google Scholar 

  14. Pakhomov, A. G., & Murphy, M. R. (2000). Low-intensity millimeter waves as a novel therapeutic modality. IEEE Transactions on Plasma Science, 28, 34–40.

    Article  Google Scholar 

  15. Rojavin, M. A., & Ziskin, M. C. (1998). Medical application of millimeter waves. The Quarterly Journal of Medicine, 91, 57–66.

    CAS  Google Scholar 

  16. Pletnev, S. D. (2000). The use of millimeter band electromagnetic waves in clinical oncology. Critical Reviews in Biomedical Engineering, 28, 573–587.

    PubMed  CAS  Google Scholar 

  17. Rojavin, M. A., Radzievsky, A. A., Cowan, A., & Ziskin, M. C. (2000). Pain relief caused by millimeter waves in mice: Results of cold water tail flick tests. International Journal of Radiation Biology, 76, 575–580.

    Article  PubMed  CAS  Google Scholar 

  18. Radzievsky, A. A., Rojavin, M. A., Cowan, A., & Ziskin, M. C. (1999). Suppression of pain sensation caused by millimeter waves: A double blind, crossover, prospective human volunteer study. Anesthesia and Analgesia, 88, 836–840.

    Article  PubMed  CAS  Google Scholar 

  19. Radzievsky, A. A., Gordiienko, O. V., Alekseev, S. I., Szabo, I., Cowan, A., & Ziskin, M. C. (2008). Electromagnetic millimeter wave induced hypoalgesia: Frequency dependence and involvement of endogenous opioids. Bioelectromagnetics, 29, 284–295.

    Article  PubMed  CAS  Google Scholar 

  20. Radzievsky, A. A., Gordiienko, O. V., Szabo, I., Alekseev, S. I., & Ziskin, M. C. (2004). Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: Involvement of endogenous opioids. Bioelectromagnetics, 25, 466–473.

    Article  PubMed  CAS  Google Scholar 

  21. Logani, M. K., Szabo, I., Makar, V., Bhanushali, A., Alekseev, S. I., & Ziskin, M. C. (2006). Effect of millimeter wave irradiation on tumor metastasis. Bioelectromagnetics, 27, 258–264.

    Article  PubMed  Google Scholar 

  22. Chidichimo, G., Beneduci, A., Nicoletta, M., Critelli, M., De Rose, R., Tkatchenko, Y., et al. (2002). Selective inhibition of tumoral cells growth by low power millimeter waves. Anticancer Research, 22, 1681–1688.

    PubMed  Google Scholar 

  23. Beneduci, A., Chidichimo, G., Tripepi, S., & Perrotta, E. (2005). Transmission electron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF-7 human breast cancer cells in culture. Anticancer Research, 25, 1009–1014.

    PubMed  Google Scholar 

  24. Beneduci, A., Chidichimo, G., De Rose, R., Filippelli, L., Straface, S. V., & Venuta, S. (2005). Frequency and irradiation time-dependant antiproliferative effect of low-power millimeter waves on RPMI 7932 human melanoma cell line. Anticancer Research, 25, 1023–1028.

    PubMed  Google Scholar 

  25. Beneduci, A., Chidichimo, G., Tripepi, S., Perrotta, E., & Cufone, F. (2007). Antiproliferative effect of millimeter radiation on human erythromyeloid leukaemia cell line K562 in culture: Ultrastructural- and metabolic-induced changes. Bioelectrochemistry, 70, 214–220.

    Article  PubMed  CAS  Google Scholar 

  26. Alekseev, S. I., Radzievsky, A. A., Logani, M. K., & Ziskin, M. C. (2008). Millimeter wave dosimetry of human skin. Bioelectromagnetics, 29, 65–70.

    Article  PubMed  CAS  Google Scholar 

  27. Porter, C. W., Ganis, B., Rustum, Y., Wrzosek, C., Kramer, D. L., & Bergeron, R. J. (1994). Collateral sensitivity of human melanoma multidrug-resistant variants to the polyamine analogue, N1,N11-diethylnorspermine. Cancer Research, 54, 5917–5924.

    PubMed  CAS  Google Scholar 

  28. Born, M., & Wolf, W. E. (2002). Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light (7th ed., pp. 38–74). Cambridge: Cambridge University Press. 752–758.

    Google Scholar 

  29. Heavens, O. S. (1991). Optical properties of thin solid films (pp. 46–95). Mineola, NY: Dover.

    Google Scholar 

  30. Townsend, K. M. S., Stretch, A., Stevens, D. L., & Goodhead, D. T. (1990). Thickness measurements on V79-4 cells: A comparison between laser scanning confocal microscopy and electron microscopy. International Journal of Radiation Biology, 58, 499–508.

    Article  PubMed  CAS  Google Scholar 

  31. Adams, R. L. P. (1990). Cell culture for biochemists. In R. H. Burdon, & P. H. van Knippenberg (Eds.), Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 8. Amsterdam-New York-Oxford: Elsevier, pp. 11–33.

  32. Beneduci, A. (2008). Which is the effective time scale of the fast Debye relaxation process in water? Journal of Molecular Liquids, 138, 55–60.

    Article  CAS  Google Scholar 

  33. Alekseev, S. I., & Ziskin, M. C. (2007). Human skin permittivity determined by millimeter wave reflection measurements. Bioelectromagnetics, 28, 331–339.

    Article  PubMed  CAS  Google Scholar 

  34. Burkitt, H. J., Young, B., & Heath, J. W. (1993). Wheather’s functional histology. A text and colour atlas (3rd ed., pp. 153–163). London, UK: Longman Group UK Limited.

    Google Scholar 

  35. Afsar, M. N. (1984). Dielectric measurements of millimeter-wave materials. IEEE Transactions on Microwave Theory and Techniques, 32, 1598–1609.

    Article  Google Scholar 

  36. Bhuyan, B. H., Adams, E. G., Badiner, G., Li, L. H., & Barden, K. (1986). Cell cycle effects of prostaglandins A1, A2, and D2 in human and murine melanoma cells in culture. Cancer Research, 46, 1688–1693.

    PubMed  CAS  Google Scholar 

  37. Montaldo, P. G., Pagnan, G., Pastorino, F., Chiesa, V., Raffaghello, L., Kirchmeier, M., et al. (1999). N-(4-hydroxyphenyl) retinamide is cytotoxic to melanoma cells in vitro through induction of programmed cell death. International Journal of Cancer, 81, 262–267.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Regione Calabria (POR 2000/2006, misura 3.16, progetto PROSICA) and Lega Italiana per la Lotta Contro i Tumori-LILT-Sezione Cosenza. AB is grateful to Dr. Giuseppe Acri for the measurements of the electromagnetic background and to Y. Koshurinov for providing some technical data on the MMW source generators and on the propagation pattern of the conical antenna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amerigo Beneduci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beneduci, A. Evaluation of the Potential In Vitro Antiproliferative Effects of Millimeter Waves at Some Therapeutic Frequencies on RPMI 7932 Human Skin Malignant Melanoma Cells. Cell Biochem Biophys 55, 25–32 (2009). https://doi.org/10.1007/s12013-009-9053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9053-8

Keywords

Navigation