Skip to main content
Log in

The Effect of ELF Magnetic Field on Tumor Growth after Electrochemotherapy

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

From a fundamental point of view, chemotherapy is the most widely used treatment for cancers despite its side effects on normal cells and tissues. Electrochemotherapy (ECT) is a method for increasing the permeability of cancer cells to drugs and, hence, decreasing their dosage. It apparently creates electropores on the cell membrane using electric pulses. ECT can decrease tumor volume; but this effect is not permanent, and partial regrowth has been reported. The aim of this study was to investigate the potential of magnetic fields in preventing the regrowth of tumors after ECT. Tumoral Balb/c mice were exposed to a magnetic field (15 mT, 50 Hz) for 12 days after treating additionally with 70 V/cm electric pulses and bleomycin at the first day. The magnetic field caused a significant reduction in tumor volumes, while there was no significant difference between the ECT and the electroporation with ECT and magnetic field groups. The exploited magnetic field (15 mT, 50 Hz) could decrease the tumor growth rate significantly, without any effect on ECT efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akiko H, Toshio N, Junji M, Toshihiko T, Ikuo K, Shingo F (2000) Enhancement of antitumor effect of bleomycin by low-voltage (in vivo) electroporation: a study of human uterine leiomyosarcomas in nude mice. Int J Cancer 88:640–644

    Article  Google Scholar 

  • Babincová M, Sourivong P, Leszczynska D, Babinec P (2000) Influence of alternating magnetic fields on two-dimensional tumor growth. Informahealthcare 19:351–355

    Google Scholar 

  • Bellossi A, Desplaces A (1991) Effect of a 9 mT pulsed magnetic field on C3H/Bi female mice with mammary carcinoma: a comparison between the 12 Hz and the 460 Hz frequencies. In Vivo 5:39–40

    CAS  PubMed  Google Scholar 

  • Berg H, Gãœnther B, Hilger I, Radeva M, Traitcheva N, Wollweber L (2010) Bioelectromagnetic field effects on cancer cells and mice tumors. Electromagn Biol Med 29:132–143

    Article  PubMed  Google Scholar 

  • Chen C, Evans JA, Robinson MP, Smye SW, Tool PO (2010) Electroporation of cells using EM induction of ac fields by a magnetic stimulator. Phys Med Biol 55:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Deurloo MJM, Kop W, Tellingen O, Bartelink H, Begg AC (1991) Intratumoural administration of cisplatin in slow-release devices: II. Pharmacokinetics and intratumoural distribution. Cancer Chemother Pharmacol 27:347–353

    Article  CAS  PubMed  Google Scholar 

  • Domenge C, Luboinski B, Baere TD, Schwaab G, Belehradek J, Mir LM, Orlowski S (1996) Antitumor electrochemotherapy: new advances in the clinical protocol. Cancer 77:956–963

    Article  CAS  PubMed  Google Scholar 

  • Hannan CJ, Liang Y, Allison JD, Pantazis CG, Searle JR (1994) Chemotherapy of human carcinoma zenografts during pulsed magnetic field exposure. Anticancer Res 14:1521–1524

    PubMed  Google Scholar 

  • Heller R, Gilbert R, Jaroszeski MJ (1999) Clinical applications of ECT. Adv Drug Deliv Rev 35:119–129

    Article  CAS  PubMed  Google Scholar 

  • Jacob GR, Amanda RP, Kirk OM, Byron KM, Kim LON (2002) Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics 23:106–112

    Google Scholar 

  • Jordan DW, Gilgenbach RM, Uhler MD, Gates LH, Lau YY (2004) Effect of pulsed, high-power radiofrequency radiation on electroporation of mammalian cells. IEEE Trans Plasma Sci 32:1573–1578

    Article  Google Scholar 

  • Kim J, Ha CS, Lee HJ, Song K (2010) Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells. Biochem Biophys Res Commun 400:739–744

    Article  CAS  PubMed  Google Scholar 

  • Kitamura A (2003) Bleomycin-mediated electrochemotherapy in mouse NR-S1 carcinoma. Cancer Chemother Pharmacol 51:359–362

    PubMed  Google Scholar 

  • Lai H, Singh NP (1997) Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics 18:156–165

    Article  CAS  PubMed  Google Scholar 

  • Lang SA, Stoeltzing O (2006) Tumour models: analysis of angiogenesis in vivo. In: Staton CA, Lewis C, Bicknell R (eds) Angiogenesis assays. Wiley, Chichester, pp 265–292

    Chapter  Google Scholar 

  • Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–4693

    PubMed  Google Scholar 

  • Mansourian M, Firoozabadi SMP, Shankayi Z, Hassan ZM (2013) Magnetic fields with frequency of 217 Hz can reduce cell apoptosis caused by electrochemotherapy. Electromagn Biol Med 32:70–78

    Article  CAS  PubMed  Google Scholar 

  • Matsuki N, Ishikawa T, Imai Y, Yamaguchi T (2008) Low voltage pulses can induce apoptosis. Cancer Lett 269:93–100

    Article  CAS  PubMed  Google Scholar 

  • McNamee JP, Bellier PV, McLean JRN, Marro L, Gajda GB, Thansandote A (2002) DNA damage and apoptosis in the immature mouse cerebellum after acute exposure to a 1 mT, 60 Hz magnetic field. Mutat Res 513:121–133

    Article  CAS  PubMed  Google Scholar 

  • Mikirova N, Jackson JA, Casciari JJ, Riordan HD (2001) The effect of alternating magnetic field exposure and vitamin C on cancer cells. J Orthomol Med 16:177–182

    Google Scholar 

  • Miklavcic D, Pucihar G, Pavlovec M, Ribaric S, Mali M, Macek-Lebar A, Petkovsek M, Nastran J, Simona K, Cemazar M, Sersa G (2005) The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65:121–128

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S, Gunji Y, Matsubara H, Shimada H, Uesato M, Suzuki T, Teruo K, Takenori O (2003) Possible involvement of antitumor immunity in the eradication of colon 26 induced by low-voltage electrochemotherapy with bleomycin. Surg Today 33:39–44

    Article  CAS  PubMed  Google Scholar 

  • Neal RE, Davalos RV (2009) The feasibility of irreversible electroporation for the treatment of breast cancer and other heterogeneous systems. Ann Biomed Eng 37:2615–2625

    Article  PubMed  Google Scholar 

  • Phillips JL, Singh NP, Lai H (2009) Electromagnetic fields and DNA damage. Pathophysiology 16:79–88

    Article  CAS  PubMed  Google Scholar 

  • Pucihar G, Mir LM, Miklavcic D (2002) The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy. Bioelectrochemistry 57:167–172

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero M, Bottaro DP, Liguri G, Gulisano M, Peruzzi B, Pacini S (2005) 0.2 T magnetic field inhibits angiogenesis in chick embryo chorioallantoic membrane. Bioelectromagnetics 25:390–396

    Article  Google Scholar 

  • Schmitz C, Keller E, Freuding T, Silny J, Korr H (2004) 50-Hz magnetic field exposure influences DNA repair and mitochondrial DNA synthesis of distinct cell types in brain and kidney of adult mice. Acta Neuropathol 107:257–264

    Article  CAS  PubMed  Google Scholar 

  • Sersa G, Cemazar M, Parkins CS, Chaplin DJ (1999) Tumour blood flow changes induced by application of electric pulses. Eur J Cancer 35:672–677

    Article  CAS  PubMed  Google Scholar 

  • Seze RD, Tuffet S, Moreau J-M, Veyret B (2000) Effects of 100 mT time varying magnetic fields on the growth of tumors in mice. Bioelectromagnetics 21:107–111

    Article  PubMed  Google Scholar 

  • Shankayi Z, Firoozabadi SMP (2011) Tumor growth inhibited by low-voltage amplitude and 5-kHz frequency electrochemotherapy. J Membr Biol 244:121–128

    Article  CAS  PubMed  Google Scholar 

  • Shankayi Z, Firoozabadi SM, Hassan ZM (2010) The effect of rectangular electric pulse number in electrochemotherapy by low voltage and high frequency on breast tumors in Balb/c mice. Yakhteh Medical Journal 12:381–384

    Google Scholar 

  • Steerenberg PA, Storm G, Groot G, Claessen A, Bergers JJ, Franken MAM, Hoesel QGCM, Wubs KL, Jong WH (1988) Liposomes as drug carrier system for cis-diamminedichloroplatinum (II). II. Antitumor activity in vivo, induction of drug resistance, nephrotoxicity and Pt distribution. Cancer Chemother Pharmacol 21:299–307

    Article  CAS  PubMed  Google Scholar 

  • Tofani S, Barone D, Berardelli M, Berno E, Cintorino M, Foglia L, Ossola P, Ronchetto F, Toso E, Eandi M (2003) Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against Lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacol Res 48:83–90

    CAS  PubMed  Google Scholar 

  • William CD, Markov MS, Hardman WE, Cameron IL (2001) Therapeutic electromagnetic field effects on angiogenesis and tumor growth. Anticancer Res 21:3887–3892

    Google Scholar 

  • Williams CD, Markov MS (2001) Therapeutic electromagnetic field effects on angiogenesis during tumor growth: a pilot study in mice. Electromagn Biol Med 20:323–329

    Google Scholar 

  • Winker R, Ivancsits S, Pilger A, Adlkofer F, Rüdiger HW (2005) Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res 585:43–49

    Article  CAS  PubMed  Google Scholar 

  • Yoshiharu O, Masuo H, Masashi K, Tsutomu N, Susumu N, Yoshihiko K, Hiroshi K (1990) Treatment of experimental tumors with a combination of a pulsing magnetic field and an antitumor drug. Cancer Sci 81:956–961

    Google Scholar 

Download references

Acknowledgments

This work is part of the master’s thesis research of A. Mahna, supported by Tarbiat Modares University. We thank Dr. Nasser Mahna from the University of Tabriz for peer reviewing the manuscript and for his extraordinary talent and dedication in editing the English version of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. P. Firoozabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahna, A., Firoozabadi, S.M.P. & Shankayi, Z. The Effect of ELF Magnetic Field on Tumor Growth after Electrochemotherapy. J Membrane Biol 247, 9–15 (2014). https://doi.org/10.1007/s00232-013-9605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-013-9605-0

Keywords

Navigation