Skip to main content

Advertisement

Log in

Analysis of the methylation patterns of the p16 INK4A, p15 INK4B, and APC genes in gastric adenocarcinoma patients from a Brazilian population

  • Research Article
  • Published:
Tumor Biology

Abstract

Gastric cancer is a major public health problem in Pará state, where studies suggest complex genetic and epigenetic profiles of the population, indicating the need for the identification of molecular markers for this tumor type. In the present study, the methylation patterns of three genes [p16 INK4A, p15 INK4B, and adenomatous polyposis coli (APC)] were assessed in patients with gastric adenocarcinoma from Pará state in order to identify possible molecular markers of gastric carcinogenesis. DNA samples from tumoral and non-tumoral gastric tissues were modified with sodium bisulfite. A fragment of the promoter region of each gene was amplified and sequenced, and samples with more than 20 % of methylated CpG sites were considered hypermethylated. The correlation between the methylation pattern of the selected genes and the MTHFR C677T polymorphism, as well as the relationship between APC and CDH1 methylation, were evaluated. The results suggest that APC hypermethylation is an age-specific marker of gastric carcinogenesis, and the concordance of this event with CDH1 hypermethylation suggests that the Wnt pathway has an important role in gastric carcinogenesis. While the hypermethylation pattern of p15 INK4B seems to be an earlier event in this type of tumor, the hypomethylated status of this gene seems to be correlated to the C677T MTHFR TT genotype. On the other hand, the observed pattern of p16 INK4A hypermethylation suggests that this event is a good marker for the gastric cancer pathway in the Pará state population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Instituto Nacional do Câncer (INCA). Estimativa 2012. Incidência de Câncer no Brasil. Instituto Nacional de Câncer José Alencar Gomes da Silva/Ministério da Saúde. Rio de Janeiro: Coordenação Geral de Ações Estratégicas, Coordenação de Prevenção e Vigilância; 2011.

  2. Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr. 2012;3:21–38.

    Article  PubMed  CAS  Google Scholar 

  3. Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals. Biochimie. 2012;94:2202–11.

    Article  PubMed  CAS  Google Scholar 

  4. Lewin J, Schmitt AO, Adorján P, Hildmann T, Piepenbrock C. Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics. 2004;20:3005–12.

    Article  PubMed  CAS  Google Scholar 

  5. Ushijima T, Okochi-Takada E. Aberrant methylations in cancer cells: where do they come from? Cancer Sci. 2005;96:206–11.

    Article  PubMed  CAS  Google Scholar 

  6. Vogiatzi P, Vindigni C, Roviello F, Renieri A, Giordano A. Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol. 2007;211:287–95.

    Article  PubMed  CAS  Google Scholar 

  7. Hoppler S, Kavanagh CL. Wnt signalling: variety at the core. J Cell Sci. 2007;120:385–93.

    Article  PubMed  CAS  Google Scholar 

  8. Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13:4042–5.

    Article  PubMed  CAS  Google Scholar 

  9. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    Article  PubMed  CAS  Google Scholar 

  10. Qin Y, Liu JY, Li B, Sun ZL, Sun ZF. Association of low p16INK4a and p15INK4b mRNAs expression with their CpG islands methylation with human hepatocellular carcinogenesis. World J Gastroenterol. 2004;10:1276–80.

    PubMed  CAS  Google Scholar 

  11. Tadokoro H, Shigihara T, Ikeda T, Takase M, Suyama M. Two distinct pathways of p16 gene inactivation in gallbladder cancer. World J Gastroenterol. 2007;13:6396–403.

    Article  PubMed  CAS  Google Scholar 

  12. Chim CS, Fung TK, Wong KF, Lau JS, Law M, Liang R. Methylation of INK4 and CIP/KIP families of cyclin-dependent kinase inhibitor in chronic lymphocytic leukaemia in Chinese patients. J Clin Pathol. 2006;59:921–6.

    Article  PubMed  CAS  Google Scholar 

  13. Deligezer U, Erten N, Akisik EE, Dalay N. Methylation of the INK4A/ARF locus in blood mononuclear cells. Ann Hematol. 2006;85:102–7.

    Article  PubMed  CAS  Google Scholar 

  14. Ota N, Kawakami K, Okuda T, Takehara A, Hiranuma C, Oyama K, et al. Prognostic significance of p16(INK4a) hypermethylation in non-small cell lung cancer is evident by quantitative DNA methylation analysis. Anticancer Res. 2006;26:3729–32.

    PubMed  CAS  Google Scholar 

  15. Braggio E, Maiolino A, Gouveia ME, Magalhães R, Souto Filho JT, Garnica M, et al. Methylation status of nine tumor suppressor genes in multiple myeloma. Int J Hematol. 2010;91:87–96.

    Article  PubMed  CAS  Google Scholar 

  16. Iyer P, Zekri AR, Hung CW, Schiefelbein E, Ismail K, Hablas A, et al. Concordance of DNA methylation pattern in plasma and tumor DNA of Egyptian hepatocellular carcinoma patients. Exp Mol Pathol. 2010;88:107–11.

    Article  PubMed  CAS  Google Scholar 

  17. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand. 1965;64:31–9.

    PubMed  CAS  Google Scholar 

  18. Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93:9821–6.

    Article  PubMed  CAS  Google Scholar 

  19. Kawamata N, Inagaki N, Mizumura S, Sugimoto KJ, Sakajiri S, Ohyanagi-Hara M, et al. Methylation status analysis of cell cycle regulatory genes (p16INK4A, p15INK4B, p21Waf1/Cip1, p27Kip1 and p73) in natural killer cell disorders. Eur J Haematol. 2005;74:424–9.

    Article  PubMed  CAS  Google Scholar 

  20. Clément G, Bosman FT, Fontolliet C, Benhattar J. Monoallelic methylation of the APC promoter is altered in normal gastric mucosa associated with neoplastic lesions. Cancer Res. 2004;64:6867–73.

    Article  PubMed  Google Scholar 

  21. Dobrovic A, Bianco T, Tan LW, Sanders T, Hussey D. Screening for and analysis of methylation differences using methylation-sensitive single-strand conformation analysis. Methods. 2002;27:134–8.

    Article  PubMed  CAS  Google Scholar 

  22. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 1999;41:95–8.

    CAS  Google Scholar 

  23. Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005;21:4067–8.

    Article  PubMed  CAS  Google Scholar 

  24. Borges BN, Santos ES, Bastos CEMC, Pinto LC, Anselmo NP, Quaresma JAS, et al. Promoter polymorphisms and methylation of E-cadherin (CDH1) and KIT in gastric cancer patients from Northern Brazil. Anticancer Res. 2010;30:2225–34.

    CAS  Google Scholar 

  25. Morán A, Fernández-Marcelo T, Carro J, De Juan C, Pascua I, Head J, et al. Methylation profiling in non-small cell lung cancer: clinical implications. Int J Oncol. 2012;40:739–46.

    PubMed  Google Scholar 

  26. Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T, et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006;66:6546–52.

    Article  PubMed  CAS  Google Scholar 

  27. Guenin S, Mouallif M, Deplus R, Lampe X, Krusy N, Calonne E, et al. Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLoS One. 2012;7:e42704.

    Article  PubMed  CAS  Google Scholar 

  28. Moore LE, Nickerson ML, Brennan P, Toro JR, Jaeger E, Rinsky J, et al. Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet. 2011;7:e1002312.

    Article  PubMed  CAS  Google Scholar 

  29. Kawai Y, Sakano S, Suehiro Y, Okada T, Korenaga Y, Hara T, et al. Methylation level of the RASSF1A promoter is an independent prognostic factor for clear-cell renal cell carcinoma. Ann Oncol. 2010;21:1612–7.

    Article  PubMed  CAS  Google Scholar 

  30. Cheetham S, Tang MJ, Mesak F, Kennecke H, Owen D, Tai IT. SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-aza-2′deoxycytidine to increase SPARC expression and improve therapy response. Br J Cancer. 2008;98:1810–9.

    Article  PubMed  CAS  Google Scholar 

  31. Motta FJN. Instabilidade de Microssatélites em Tumores Gástricos na População Paraense. Dissertation. Belém: Universidade Federal do Pará; 2004.

    Google Scholar 

  32. Borges BN, Burbano RR, Harada ML. Survivin -31C/G polymorphism and gastric cancer risk in a Brazilian population. Clin Exp Med. 2011;11:189–93.

    Article  Google Scholar 

  33. Neves Filho EHC, Alves MKS, Lima VP, Rabenhorst SHB. MTHFR C677T polymorphism and differential methylation status in gastric cancer: an association with Helicobacter pylori infection. Virchows Arch. 2010;457:627–33.

    Article  PubMed  CAS  Google Scholar 

  34. Ayres M, Ayres Jr M, Ayres DL, Santos AAS. BioEstat. Aplicações estatísticas nas áreas das ciências bio-médicas v. 5.0. Belém: Instituto de Desenvolvimento Sustentável Mamirauá; 2007.

    Google Scholar 

  35. Zhu J, Yao X. Use of DNA methylation for cancer detection and molecular classification. J Biochem Mol Biol. 2007;40:135–41.

    Article  PubMed  CAS  Google Scholar 

  36. Hsiung DT, Marsit CJ, Houseman EA, Eddy K, Furniss CS, Mcclean MD, et al. Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2007;16:108–14.

    Article  PubMed  Google Scholar 

  37. Model F, Osborn N, Ahlquist D, Gruetzmann R, Molnar B, Sipos F, et al. Identification and validation of colorectal neoplasia-specific methylation markers for accurate classification of disease. Mol Cancer Res. 2007;5:153–63.

    Article  PubMed  CAS  Google Scholar 

  38. Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60:4366–71.

    PubMed  CAS  Google Scholar 

  39. Kang GH, Lee S, Kim JS, Jung HY. Profile of aberrant CpG island methylation along multistep gastric carcinogenesis. Lab Invest. 2003;83:519–26.

    PubMed  CAS  Google Scholar 

  40. Ksiaa F, Ziadi S, Amara K, Korbi S, Trimeche M. Biological significance of promoter hypermethylation of tumor-related genes in patients with gastric carcinoma. Clin Chim Acta. 2009;404:128–33.

    Article  PubMed  CAS  Google Scholar 

  41. Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet. 2001;10:721–33.

    Article  PubMed  CAS  Google Scholar 

  42. Choi IS, Wu TT. Epigenetic alterations in gastric carcinogenesis. Cell Res. 2005;15:247–54.

    Article  PubMed  CAS  Google Scholar 

  43. Thorstensen L, Lind GE, Løvig T, Diep CB, Meling GI, Rognum TO, et al. Genetic and epigenetic changes of components affecting the WNT pathway in colorectal carcinomas stratified by microsatellite instability. Neoplasia. 2005;7:99–108.

    Article  PubMed  CAS  Google Scholar 

  44. Beherns J. The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochem Soc Trans. 2005;33:672–5.

    Article  Google Scholar 

  45. Fodde R, Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol. 2007;19:150–8.

    Article  PubMed  CAS  Google Scholar 

  46. Cheng XX, Wang ZC, Chen XY, Sun Y, Kong QY, Liu J, et al. Frequent loss of membranous E-cadherin in gastric cancers: a cross-talk with Wnt in determining the fate of beta-catenin. Clin Exp Metastasis. 2005;22:85–93.

    Article  PubMed  CAS  Google Scholar 

  47. Oshima H, Oguma K, Du YC, Oshima M. Prostaglandin E2, Wnt, and BMP in gastric tumor mouse models. Cancer Sci. 2009;100:1779–85.

    Article  PubMed  CAS  Google Scholar 

  48. Sarrió D, Moreno-Bueno G, Hardisson D, Sánchez-Estévez C, Guo M, Herman JG, et al. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer. 2003;106:208–15.

    Article  PubMed  Google Scholar 

  49. Tang M, Torres-Lanzas J, Lopez-Rios F, Esteller M, Sanchez-Cespedes M. Wnt signaling promoter hypermethylation distinguishes lung primary adenocarcinomas from colorectal metastasis to the lung. Int J Cancer. 2006;119:2603–6.

    Article  PubMed  CAS  Google Scholar 

  50. Leung WK, Yu J, Ng EK, To KF, Ma PK, Lee TL, et al. Concurrent hypermethylation of multiple tumor-related genes in gastric carcinoma and adjacent normal tissues. Cancer. 2011;91:2294–301.

    Article  Google Scholar 

  51. Kolesnikova EY, Tamkovich SN, Bryzgunova OE, Shelestyuk PI, Permyakova VI, Vlassov VV, et al. Circulating DNA in the blood of gastric cancer patients. Ann N Y Acad Sci. 2008;1137:226–31.

    Article  PubMed  CAS  Google Scholar 

  52. Gonzalez-Zulueta M, Bender CM, Yang AS, Nguyen T, Beart RW, Van Tornout JM, et al. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995;55:4531–5.

    PubMed  CAS  Google Scholar 

  53. Kanyama Y, Hibi K, Nakayama H, Kodera Y, Ito K, Akiyama S, et al. Detection of p16 promoter hypermethylation in serum of gastric cancer patients. Cancer Sci. 2003;94:418–20.

    Article  PubMed  CAS  Google Scholar 

  54. Leal MF, Lima EM, Silva PN, Assumpção PP, Calcagno DQ, Payão SL, et al. Promoter hypermethylation of CDH1, FHIT, MTAP and PLAGL1 in gastric adenocarcinoma in individuals from Northern Brazil. World J Gastroenterol. 2007;13:2568–74.

    PubMed  CAS  Google Scholar 

  55. Guimarães AC, Lima EM, Khayat AS, Girão Faria MH, Barem Rabenhorst SH, Pitombeira MV, et al. Lima De Lima PD, De Arruda Cardoso Smith M, Burbano RR. Interrelationships among chromosome aneuploidy, promoter hypermethylation, and protein expression of the CDKN2A gene in individuals from northern Brazil with gastric adenocarcinoma. Cancer Genet Cytogenet. 2007;179:45–51.

    Article  PubMed  Google Scholar 

  56. Song SH, Jong HS, Choi HH, Kang SH, Ryu MH, Kim NK, et al. Methylation of specific CpG sites in the promoter region could significantly down-regulate p16(INK4a) expression in gastric adenocarcinoma. Int J Cancer. 2000;87:236–40.

    Article  PubMed  CAS  Google Scholar 

  57. Fang JY, Yang L, Zhu HY, Chen YX, Lu J, Lu R, et al. 5-Aza-2′-deoxycitydine induces demethylation and up-regulates transcription of p16INK4A gene in human gastric cancer cell lines. Chin Med J. 2004;117:99–103.

    PubMed  CAS  Google Scholar 

  58. Liu J, Xie YS, Wang FL, Zhang LJ, Zhang Y, Luo HS. Cytotoxicity of 5-aza-2′-deoxycytidine against gastric cancer involves DNA damage in an ATM-P53 dependent signaling pathway and demethylation of P16(INK4A). Biomed Pharmacother. 2013;67:78–87.

    Article  PubMed  CAS  Google Scholar 

  59. Mitsuno M, Kitajima Y, Ide T, Ohtaka K, Tanaka M, Satoh S, et al. Aberrant methylation of p16 predicts candidates for 5-fluorouracil-based adjuvant therapy in gastric cancer patients. J Gastroenterol. 2007;42:866–73.

    Article  PubMed  CAS  Google Scholar 

  60. Stern LL, Mason JB, Selhub J, Choi SW. Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev. 2000;9:849–53.

    PubMed  CAS  Google Scholar 

  61. Tahara T, Shibata T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, et al. MTHFR 677 T carrier influences the methylation status of H. pylori-infected gastric mucosa in older subjects. Dig Dis Sci. 2009;54:2391–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the patients and hospitals who took part in this research. This research was supported by a doctoral fellowship to B.N. Borges and a research fellowship to R.R. Burbano (302774/2009-2) provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and by research funds from Fundação de Amparo à Pesquisa do Estado do Pará (FAPESPA).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bárbara do Nascimento Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

do Nascimento Borges, B., Burbano, R.M.R. & Harada, M.L. Analysis of the methylation patterns of the p16 INK4A, p15 INK4B, and APC genes in gastric adenocarcinoma patients from a Brazilian population. Tumor Biol. 34, 2127–2133 (2013). https://doi.org/10.1007/s13277-013-0742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0742-y

Keywords

Navigation