Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNH1 regulation of reactive oxygen species contributes to histone deacetylase inhibitor resistance in gastric cancer cells

Abstract

Histone deacetylase inhibitors (HDACis) are a promising class of anticancer epigenetic drugs, however, molecular factors influencing the responses of individual tumors to HDACi therapies remain obscure. Here, we sought to identify genes associated with HDACi resistance in gastric cancer. Treating a panel of 17 gastric cancer cell lines with multiple HDACi compounds (trichostatin A, SAHA and MS275), we identified two distinct classes of lines exhibiting either HDACi sensitivity or resistance. Genomic comparisons between the sensitive and resistant classes using two independent microarray platforms identified RNH1, encoding a ribonuclease inhibitor, as a gene highly expressed in HDACi-resistant lines. Using genetic knockdown and overexpression assays, we show that RNH1 is both necessary and sufficient to induce HDACi resistance, and that RNH1 is likely to mediate this resistance through the dampening of HDACi-induced reactive oxygen species (ROS) in cancer cells. The discovery of RNH1 as a regulator of HDACi resistance in gastric cancer highlights a functional role for ROS induction in the cellular effects of this important drug class.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Strahl BD, Allis CD . The language of covalent histone modifications. Nature 2000; 403: 41–45.

    Article  CAS  Google Scholar 

  2. Klose RJ, Bird AP . Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31: 89–97.

    Article  CAS  Google Scholar 

  3. Song SH, Han SW, Bang YJ . Epigenetic-based therapies in cancer: progress to date. Drugs 2011; 71: 2391–2403.

    Article  CAS  Google Scholar 

  4. Glaser KB . HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 2007; 74: 659–671.

    Article  CAS  Google Scholar 

  5. Zaina S, Perez-Luque EL, Lund G . Genetics talks to epigenetics? The interplay between sequence variants and chromatin structure. Curr Genomics 2010; 11: 359–367.

    Article  CAS  Google Scholar 

  6. Yoo CB, Jones PA . Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006; 5: 37–50.

    Article  CAS  Google Scholar 

  7. Dokmanovic M, Clarke C, Marks PA . Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 2007; 5: 981–989.

    Article  CAS  Google Scholar 

  8. Xu WS, Parmigiani RB, Marks PA . Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007; 26: 5541–5552.

    Article  CAS  Google Scholar 

  9. Bolden JE, Peart MJ, Johnstone RW . Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.

    Article  CAS  Google Scholar 

  10. Carew JS, Giles FJ, Nawrocki ST . Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 2008; 269: 7–17.

    Article  CAS  Google Scholar 

  11. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R . FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 2007; 12: 1247–1252.

    Article  CAS  Google Scholar 

  12. Khan O, Fotheringham S, Wood V, Stimson L, Zhang C, Pezzella F et al. HR23B is a biomarker for tumor sensitivity to HDAC inhibitor-based therapy. Proc Natl Acad Sci USA 2010; 107: 6532–6537.

    Article  CAS  Google Scholar 

  13. Kobayashi T, Kikuchi S, Lin Y, Yagyu K, Obata Y, Ogihara A et al. Trends in the incidence of gastric cancer in Japan and their associations with Helicobacter pylori infection and gastric mucosal atrophy. Gastric Cancer 2004; 7: 233–239.

    Article  Google Scholar 

  14. Alberts SR, Cervantes A, van de Velde CJ . Gastric cancer: epidemiology, pathology and treatment. Ann Oncol 2003; 14 (Suppl 2): ii31–ii36.

    PubMed  Google Scholar 

  15. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ . Cancer statistics, 2007. CA Cancer J Clin 2007; 57: 43–66.

    Article  Google Scholar 

  16. Kim JH, Choi YK, Kwon HJ, Yang HK, Choi JH, Kim DY . Downregulation of gelsolin and retinoic acid receptor beta expression in gastric cancer tissues through histone deacetylase 1. J Gastroenterol Hepatol 2004; 19: 218–224.

    Article  CAS  Google Scholar 

  17. Lee JY, Eom EM, Kim DS, Ha-Lee YM, Lee DH . Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE. Genomics 2003; 82: 78–85.

    Article  CAS  Google Scholar 

  18. Ono S, Oue N, Kuniyasu H, Suzuki T, Ito R, Matsusaki K et al. Acetylated histone H4 is reduced in human gastric adenomas and carcinomas. J Exp Clin Cancer Res 2002; 21: 377–382.

    CAS  PubMed  Google Scholar 

  19. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M . Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 2004; 5: 455–463.

    Article  CAS  Google Scholar 

  20. Claerhout S, Lim JY, Choi W, Park YY, Kim K, Kim SB et al. Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer. PLoS One 2011; 6: e24662.

    Article  CAS  Google Scholar 

  21. Weichert W, Roske A, Gekeler V, Beckers T, Ebert MP, Pross M et al. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol 2008; 9: 139–148.

    Article  CAS  Google Scholar 

  22. Mutze K, Langer R, Becker K, Ott K, Novotny A, Luber B et al. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann Surg Oncol 2010; 17: 3336–3343.

    Article  Google Scholar 

  23. Ree AH, Dueland S, Folkvord S, Hole KH, Seierstad T, Johansen M et al. Vorinostat, a histone deacetylase inhibitor, combined with pelvic palliative radiotherapy for gastrointestinal carcinoma: the Pelvic Radiation and Vorinostat (PRAVO) phase 1 study. Lancet Oncol 2010; 11: 459–464.

    Article  CAS  Google Scholar 

  24. Ma X, Ezzeldin HH, Diasio RB . Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs 2009; 69: 1911–1934.

    Article  CAS  Google Scholar 

  25. Sowa Y, Orita T, Hiranabe-Minamikawa S, Nakano K, Mizuno T, Nomura H et al. Histone deacetylase inhibitor activates the p21/WAF1/Cip1 gene promoter through the Sp1 sites. Ann N Y Acad Sci 1999; 886: 195–199.

    Article  CAS  Google Scholar 

  26. Zhang X, Yashiro M, Ren J, Hirakawa K . Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol Rep 2006; 16: 563–568.

    CAS  PubMed  Google Scholar 

  27. Klampfer L, Huang J, Shirasawa S, Sasazuki T, Augenlicht L . Histone deacetylase inhibitors induce cell death selectively in cells that harbor activated kRasV12: the role of signal transducers and activators of transcription 1 and p21. Cancer Res 2007; 67: 8477–8485.

    Article  CAS  Google Scholar 

  28. Gygi SP, Rochon Y, Franza BR, Aebersold R . Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 1999; 19: 1720–1730.

    Article  CAS  Google Scholar 

  29. Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002; 1: 304–313.

    Article  CAS  Google Scholar 

  30. Shapiro R . Cytoplasmic ribonuclease inhibitor. Methods Enzymol 2001; 341: 611–628.

    Article  CAS  Google Scholar 

  31. Dickson KA, Haigis MC, Raines RT . Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 2005; 80: 349–374.

    Article  CAS  Google Scholar 

  32. Moenner M, Vosoghi M, Ryazantsev S, Glitz DG . Ribonuclease inhibitor protein of human erythrocytes: characterization, loss of activity in response to oxidative stress, and association with Heinz bodies. Blood Cells Mol Dis 1998; 24: 149–164.

    Article  CAS  Google Scholar 

  33. Johnson RJ, Lavis LD, Raines RT . Intraspecies regulation of ribonucleolytic activity. Biochemistry 2007; 46: 13131–13140.

    Article  CAS  Google Scholar 

  34. Monti DM, Montesano Gesualdi N, Matousek J, Esposito F, D'Alessio G . The cytosolic ribonuclease inhibitor contributes to intracellular redox homeostasis. FEBS Lett 2007; 581: 930–934.

    Article  CAS  Google Scholar 

  35. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R et al. The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA 2001; 98: 10833–10838.

    Article  CAS  Google Scholar 

  36. Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y et al. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 2008; 112: 1912–1922.

    Article  CAS  Google Scholar 

  37. van Zandwijk N . N-acetylcysteine (NAC) and glutathione (GSH): antioxidant and chemopreventive properties, with special reference to lung cancer. J Cell Biochem Suppl 1995; 22: 24–32.

    Article  CAS  Google Scholar 

  38. Hu Y, Lu W, Chen G, Zhang H, Jia Y, Wei Y et al. Overcoming resistance to histone deacetylase inhibitors in human leukemia with the redox modulating compound beta-phenylethyl isothiocyanate. Blood 2010; 116: 2732–2741.

    Article  CAS  Google Scholar 

  39. Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA 2005; 102: 673–678.

    Article  CAS  Google Scholar 

  40. Minucci S, Pelicci PG . Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006; 6: 38–51.

    Article  CAS  Google Scholar 

  41. Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 2007; 109: 31–39.

    Article  CAS  Google Scholar 

  42. Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007; 25: 3109–3115.

    Article  CAS  Google Scholar 

  43. Marks PA . The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs 2010; 19: 1049–1066.

    Article  CAS  Google Scholar 

  44. Bakkenist CJ, Kastan MB . DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506.

    Article  CAS  Google Scholar 

  45. Stevens FE, Beamish H, Warrener R, Gabrielli B . Histone deacetylase inhibitors induce mitotic slippage. Oncogene 2008; 27: 1345–1354.

    Article  CAS  Google Scholar 

  46. Dickinson M, Johnstone RW, Prince HM . Histone deacetylase inhibitors: potential targets responsible for their anti-cancer effect. Invest New Drugs 2010; 28 (Suppl 1): S3–20.

    Article  Google Scholar 

  47. Borbone E, Berlingieri MT, De Bellis F, Nebbioso A, Chiappetta G, Mai A et al. Histone deacetylase inhibitors induce thyroid cancer-specific apoptosis through proteasome-dependent inhibition of TRAIL degradation. Oncogene 2010; 29: 105–116.

    Article  CAS  Google Scholar 

  48. Nebbioso A, Clarke N, Voltz E, Germain E, Ambrosino C, Bontempo P et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 2005; 11: 77–84.

    Article  CAS  Google Scholar 

  49. Rikiishi H . Autophagic and apoptotic effects of HDAC inhibitors on cancer cells. J Biomed Biotechnol 2011; 2011: 830260.

    Article  Google Scholar 

  50. Rosato RR, Almenara JA, Dai Y, Grant S . Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2003; 2: 1273–1284.

    CAS  PubMed  Google Scholar 

  51. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 2002; 99: 11700–11705.

    Article  CAS  Google Scholar 

  52. Sade H, Sarin A . Reactive oxygen species regulate quiescent T-cell apoptosis via the BH3-only proapoptotic protein BIM. Cell Death Differ 2004; 11: 416–423.

    Article  CAS  Google Scholar 

  53. Nadano D, Yasuda T, Takeshita H, Uchide K, Kishi K . Purification and characterization of human brain ribonuclease inhibitor. Arch Biochem Biophys 1994; 312: 421–428.

    Article  CAS  Google Scholar 

  54. Futami J, Tsushima Y, Murato Y, Tada H, Sasaki J, Seno M et al. Tissue-specific expression of pancreatic-type RNases and RNase inhibitor in humans. DNA Cell Biol 1997; 16: 413–419.

    Article  CAS  Google Scholar 

  55. Wojnar RJ, Roth JS . Ribonuclease inhibitor and latent ribonuclease in rat liver during feeding of 2-acetamidofluorene. Cancer Res 1965; 25: 1913–1918.

    CAS  PubMed  Google Scholar 

  56. Suzuki Y, Takahashi Y . Developmental and regional variations in ribonuclease inhibitor activity in brain. J Neurochem 1970; 17: 1521–1524.

    Article  CAS  Google Scholar 

  57. Chen J, Ou-Yang X, Gao J, Zhu J, He X, Rong J . Knockdown of ribonuclease inhibitor expression with siRNA in non-invasive bladder cancer cell line BIU-87 promotes growth and metastasis potentials. Mol Cell Biochem 2011; 349: 83–95.

    Article  CAS  Google Scholar 

  58. Botella-Estrada R, Malet G, Revert F, Dasi F, Crespo A, Sanmartin O et al. Antitumor effect of B16 melanoma cells genetically modified with the angiogenesis inhibitor rnasin. Cancer Gene Ther 2001; 8: 278–284.

    Article  CAS  Google Scholar 

  59. Cui XY, Fu PF, Pan DN, Zhao Y, Zhao J, Zhao BC . The antioxidant effects of ribonuclease inhibitor. Free Radic Res 2003; 37: 1079–1085.

    Article  CAS  Google Scholar 

  60. Bragado P, Armesilla A, Silva A, Porras A . Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis 2007; 12: 1733–1742.

    Article  CAS  Google Scholar 

  61. Aresvik DM, Pettersen RD, Abrahamsen TG, Wright MS . 5-Fluorouracil-induced death of Jurkat T-cells—a role for caspases and MCL-1. Anticancer Res 2010; 30: 3879–3887.

    CAS  PubMed  Google Scholar 

  62. Kim TY, Kim IS, Jong HS, Lee JW, Jung M, Bang YJ . Transcriptional induction of DLC-1 gene through Sp1 sites by histone deacetylase inhibitors in gastric cancer cells. Exp Mol Med 2008; 40: 639–646.

    Article  CAS  Google Scholar 

  63. Huang C, Ida H, Ito K, Zhang H, Ito Y . Contribution of reactivated RUNX3 to inhibition of gastric cancer cell growth following suberoylanilide hydroxamic acid (vorinostat) treatment. Biochem Pharmacol 2007; 73: 990–1000.

    Article  CAS  Google Scholar 

  64. Nebbioso A, Dell'Aversana C, Bugge A, Sarno R, Valente S, Rotili D et al. HDACs class II-selective inhibition alters nuclear receptor-dependent differentiation. J Mol Endocrinol 2010; 45: 219–228.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank that Dr Shang Li’s lab for the gift of Hela, MCF7, HEPG2 and HCT116 cell lines. This work was funded by NMRC TCR grant TCR/001/2007 and a Duke-NUS core grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Tan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Das, K., Wu, J. et al. RNH1 regulation of reactive oxygen species contributes to histone deacetylase inhibitor resistance in gastric cancer cells. Oncogene 33, 1527–1537 (2014). https://doi.org/10.1038/onc.2013.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.104

Keywords

This article is cited by

Search

Quick links