Skip to main content

Advertisement

Log in

To bud or not to bud: the RET perspective in CAKUT

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Congenital anomalies of the kidneys or lower urinary tract (CAKUT) encompass a spectrum of anomalies that result from aberrations in spatio-temporal regulation of genetic, epigenetic, environmental, and molecular signals at key stages of urinary tract development. The Rearranged in Transfection (RET) tyrosine kinase signaling system is a major pathway required for normal development of the kidneys, ureters, peripheral and enteric nervous systems. In the kidneys, RET is activated by interaction with the ligand glial cell line-derived neurotrophic factor (GDNF) and coreceptor GFRα1. This activated complex regulates a number of downstream signaling cascades (PLCγ, MAPK, and PI3K) that control proliferation, migration, renewal, and apoptosis. Disruption of these events is thought to underlie diseases arising from aberrant RET signaling. RET mutations are found in 5–30 % of CAKUT patients and a number of Ret mouse mutants show a spectrum of kidney and lower urinary tract defects reminiscent of CAKUT in humans. The remarkable similarities between mouse and human kidney development and in defects due to RET mutations has led to using RET signaling as a paradigm for determining the fundamental principles in patterning of the upper and lower urinary tract and for understanding CAKUT pathogenesis. In this review, we provide an overview of studies in vivo that delineate expression and the functional importance of RET signaling complex during different stages of development of the upper and lower urinary tracts. We discuss how RET signaling balances activating and inhibitory signals emanating from its docking tyrosines and its interaction with upstream and downstream regulators to precisely modulate different aspects of Wolffian duct patterning and branching morphogenesis. We outline the diversity of cellular mechanisms regulated by RET, disruption of which causes malformations ranging from renal agenesis to multicystic dysplastic kidneys in the upper tract and vesicoureteral reflux or ureteropelvic junction obstruction in the lower tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R, Hirschsprung Disease Consortium (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45:1–14

    Google Scholar 

  2. Margraf RL, Crockett DK, Krautscheid PM, Seamons R, Calderon FR, Wittwer CT, Mao R (2009) Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat 30:548–556

    Article  CAS  PubMed  Google Scholar 

  3. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, Iwakawa R, Ogiwara H, Oike T, Enari M, Schetter AJ, Okayama H, Haugen A, Skaug V, Chiku S, Yamanaka I, Arai Y, Watanabe S, Sekine I, Ogawa S, Harris CC, Tsuda H, Yoshida T, Yokota J, Shibata T (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18:375–377

    Article  CAS  PubMed  Google Scholar 

  4. Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, Hoshi M, Hmiel SP, Beck A, Hruska K, Coplen D, Liapis H, Mitra R, Druley T, Austin P, Jain S (2012) Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet 131:1725–1738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jeanpierre C, Mace G, Parisot M, Moriniere V, Pawtowsky A, Benabou M, Martinovic J, Amiel J, Attie-Bitach T, Delezoide AL, Loget P, Blanchet P, Gaillard D, Gonzales M, Carpentier W, Nitschke P, Tores F, Heidet L, Antignac C, Salomon R, Societe Francaise de F (2011) RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet 48:497–504

    Google Scholar 

  6. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ (2008) Renal aplasia in humans is associated with RET mutations. Am J Hum Genet 82:344–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994) Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367:380–383

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi M, Ritz J, Cooper GM (1985) Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42:581–588

    Article  CAS  PubMed  Google Scholar 

  9. Jain S (2009) The many faces of RET dysfunction in kidney. Organogenesis 5:177–190

    Article  PubMed Central  PubMed  Google Scholar 

  10. Song R, El-Dahr SS, Yosypiv IV (2011) Receptor tyrosine kinases in kidney development. J Signal Transduct 2011:869281

    Article  PubMed Central  PubMed  Google Scholar 

  11. Parkash V, Goldman A (2009) Comparison of GFL-GFRalpha complexes: further evidence relating GFL bend angle to RET signalling. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:551–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116:3855–3862

    Article  CAS  PubMed  Google Scholar 

  13. Keefe Davis T, Hoshi M, Jain S (2013) Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development. Mech Dev 130:506–518

    Google Scholar 

  14. Enomoto H, Hughes I, Golden J, Baloh RH, Yonemura S, Heuckeroth RO, Johnson EM Jr, Milbrandt J (2004) GFRalpha1 expression in cells lacking RET is dispensable for organogenesis and nerve regeneration. Neuron 44:623–636

    Article  CAS  PubMed  Google Scholar 

  15. Golden JP, DeMaro JA, Osborne PA, Milbrandt J, Johnson EM Jr (1999) Expression of neurturin, GDNF, and GDNF family-receptor mRNA in the developing and mature mouse. Exp Neurol 158:504–528

    Article  CAS  PubMed  Google Scholar 

  16. Towers PR, Woolf AS, Hardman P (1998) Glial cell line-derived neurotrophic factor stimulates ureteric bud outgrowth and enhances survival of ureteric bud cells in vitro. Exp Nephrol 6:337–351

    Article  CAS  PubMed  Google Scholar 

  17. Ibanez CF (2013) Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a009134

  18. Dressler GR (2009) Advances in early kidney specification, development and patterning. Development 136:3863–3874

    Article  CAS  PubMed  Google Scholar 

  19. Costantini F, Kopan R (2010) Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell 18:698–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hoshi M, Batourina E, Mendelsohn C, Jain S (2012) Novel mechanisms of early upper and lower urinary tract patterning regulated by RetY1015 docking tyrosine in mice. Development 139:2405–2415

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi H, Kawakami K, Asashima M, Nishinakamura R (2007) Six1 and Six4 are essential for Gdnf expression in the metanephric mesenchyme and ureteric bud formation, while Six1 deficiency alone causes mesonephric-tubule defects. Mech Dev 124:290–303

    Article  CAS  PubMed  Google Scholar 

  22. Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, Asai N, Takahashi M, Ohgami N, Kato M, Mendelsohn C, Costantini F (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17:199–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32:109–115

    Article  CAS  PubMed  Google Scholar 

  24. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H (1996) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382:73–76

    Article  CAS  PubMed  Google Scholar 

  25. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EM Jr, Milbrandt J (1998) GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21:317–324

    Article  CAS  PubMed  Google Scholar 

  26. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, Armanini M, Phillips H, Ryan AM, Reichardt LF, Hynes M, Davies A, Rosenthal A (1998) GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21:53–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gould TW, Yonemura S, Oppenheim RW, Ohmori S, Enomoto H (2008) The neurotrophic effects of glial cell line-derived neurotrophic factor on spinal motoneurons are restricted to fusimotor subtypes. J Neurosci 28:2131–2146

    Article  CAS  PubMed  Google Scholar 

  28. Jain S, Golden JP, Wozniak D, Pehek E, Johnson EM Jr, Milbrandt J (2006) RET is dispensable for maintenance of midbrain dopaminergic neurons in adult mice. J Neurosci 26:11230–11238

    Article  CAS  PubMed  Google Scholar 

  29. Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383–394

    Article  CAS  PubMed  Google Scholar 

  30. Airaksinen MS, Titievsky A, Saarma M (1999) GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13:313–325

    Article  CAS  PubMed  Google Scholar 

  31. Nishino J, Mochida K, Ohfuji Y, Shimazaki T, Meno C, Ohishi S, Matsuda Y, Fujii H, Saijoh Y, Hamada H (1999) GFR alpha3, a component of the artemin receptor, is required for migration and survival of the superior cervical ganglion. Neuron 23:725–736

    Article  CAS  PubMed  Google Scholar 

  32. Rossi J, Luukko K, Poteryaev D, Laurikainen A, Sun YF, Laakso T, Eerikainen S, Tuominen R, Lakso M, Rauvala H, Arumae U, Pasternack M, Saarma M, Airaksinen MS (1999) Retarded growth and deficits in the enteric and parasympathetic nervous system in mice lacking GFR alpha2, a functional neurturin receptor. Neuron 22:243–252

    Article  CAS  PubMed  Google Scholar 

  33. Srinivas S, Wu Z, Chen CM, D’Agati V, Costantini F (1999) Dominant effects of RET receptor misexpression and ligand-independent RET signaling on ureteric bud development. Development 126:1375–1386

    CAS  PubMed  Google Scholar 

  34. Jain S, Naughton CK, Yang M, Strickland A, Vij K, Encinas M, Golden J, Gupta A, Heuckeroth R, Johnson EM Jr, Milbrandt J (2004) Mice expressing a dominant-negative Ret mutation phenocopy human Hirschsprung disease and delineate a direct role of Ret in spermatogenesis. Development 131:5503–5513

    Article  CAS  PubMed  Google Scholar 

  35. Jain S, Encinas M, Johnson EM Jr, Milbrandt J (2006) Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20:321–333

    Article  CAS  PubMed  Google Scholar 

  36. de Graaff E, Srinivas S, Kilkenny C, D’Agati V, Mankoo BS, Costantini F, Pachnis V (2001) Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 15:2433–2444

    Article  PubMed  Google Scholar 

  37. Jijiwa M, Fukuda T, Kawai K, Nakamura A, Kurokawa K, Murakumo Y, Ichihara M, Takahashi M (2004) A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol 24:8026–8036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Wong A, Bogni S, Kotka P, de Graaff E, D’Agati V, Costantini F, Pachnis V (2005) Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform. Mol Cell Biol 25:9661–9673

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, Milbrandt J (2010) Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest 120:778–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Shirane M, Sawa H, Kobayashi Y, Nakano T, Kitajima K, Shinkai Y, Nagashima K, Negishi I (2001) Deficiency of phospholipase C-gamma1 impairs renal development and hematopoiesis. Development 128:5173–5180

    CAS  PubMed  Google Scholar 

  41. Sims-Lucas S, Cullen-McEwen L, Eswarakumar VP, Hains D, Kish K, Becknell B, Zhang J, Bertram JF, Wang F, Bates CM (2009) Deletion of Frs2alpha from the ureteric epithelium causes renal hypoplasia. Am J Physiol Renal Physiol 297:F1208–F1219

    Article  CAS  PubMed  Google Scholar 

  42. Asai N, Fukuda T, Wu Z, Enomoto A, Pachnis V, Takahashi M, Costantini F (2006) Targeted mutation of serine 697 in the Ret tyrosine kinase causes migration defect of enteric neural crest cells. Development 133:4507–4516

    Article  CAS  PubMed  Google Scholar 

  43. Shakya R, Watanabe T, Costantini F (2005) The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 8:65–74

    Article  CAS  PubMed  Google Scholar 

  44. Pepicelli CV, Kispert A, Rowitch DH, McMahon AP (1997) GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol 192:193–198

    Article  CAS  PubMed  Google Scholar 

  45. Willecke R, Heuberger J, Grossmann K, Michos O, Schmidt-Ott K, Walentin K, Costantini F, Birchmeier W (2011) The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney. Dev Biol 360:310–317

    Article  CAS  PubMed  Google Scholar 

  46. Qiao J, Sakurai H, Nigam SK (1999) Branching morphogenesis independent of mesenchymal–epithelial contact in the developing kidney. Proc Natl Acad Sci USA 96:7330–7335

    Article  CAS  PubMed  Google Scholar 

  47. Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93:10657–10661

    Article  CAS  PubMed  Google Scholar 

  48. Uesaka T, Jain S, Yonemura S, Uchiyama Y, Milbrandt J, Enomoto H (2007) Conditional ablation of GFRalpha1 in postmigratory enteric neurons triggers unconventional neuronal death in the colon and causes a Hirschsprung’s disease phenotype. Development 134:2171–2181

    Article  CAS  PubMed  Google Scholar 

  49. Woolf AS, Davies JA (2013) Cell biology of ureter development. J Am Soc Nephrol 24:19–25

    Article  CAS  PubMed  Google Scholar 

  50. Mendelsohn C (2009) Using mouse models to understand normal and abnormal urogenital tract development. Organogenesis 5:306–314

    Article  PubMed Central  PubMed  Google Scholar 

  51. Stewart K, Bouchard M (2011) Kidney and urinary tract development: an apoptotic balancing act. Pediatr Nephrol 26:1419–1425

    Article  PubMed  Google Scholar 

  52. Stahl DA, Koul HK, Chacko JK, Mingin GC (2006) Congenital anomalies of the kidney and urinary tract (CAKUT): a current review of cell signaling processes in ureteral development. J Pediatr Urol 2:2–9

    Article  PubMed  Google Scholar 

  53. Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, Bouchard M (2011) Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 138:2089–2097

    Article  CAS  PubMed  Google Scholar 

  54. Yu OH, Murawski IJ, Myburgh DB, Gupta IR (2004) Overexpression of RET leads to vesicoureteric reflux in mice. Am J Physiol Renal Physiol 287:F1123–F1130

    Article  CAS  PubMed  Google Scholar 

  55. Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, Niederreither K, Dolle P, Duester G, Chambon P, Costantini F, Gilbert T, Molotkov A, Mendelsohn C (2010) Non-cell-autonomous retinoid signaling is crucial for renal development. Development 137:283–292

    Article  CAS  PubMed  Google Scholar 

  56. Raatikainen-Ahokas A, Hytonen M, Tenhunen A, Sainio K, Sariola H (2000) BMP-4 affects the differentiation of metanephric mesenchyme and reveals an early anterior-posterior axis of the embryonic kidney. Dev Dyn 217:146–158

    Article  CAS  PubMed  Google Scholar 

  57. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756

    CAS  PubMed  Google Scholar 

  58. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717

    Article  CAS  PubMed  Google Scholar 

  59. Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, Arber S, Hassell J, MacNeil L, Hoshi M, Jain S, Asai N, Takahashi M, Schmidt-Ott KM, Barasch J, D’Agati V, Costantini F (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41:1295–1302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Uetani N, Bertozzi K, Chagnon MJ, Hendriks W, Tremblay ML, Bouchard M (2009) Maturation of ureter-bladder connection in mice is controlled by LAR family receptor protein tyrosine phosphatases. J Clin Invest 119:924–935

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Hanafusa H, Torii S, Yasunaga T, Nishida E (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4:850–858

    Article  CAS  PubMed  Google Scholar 

  62. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239

    Article  CAS  PubMed  Google Scholar 

  63. Rozen EJ, Schmidt H, Dolcet X, Basson MA, Jain S, Encinas M (2009) Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol 20:255–259

    Article  CAS  PubMed  Google Scholar 

  64. Maeshima A, Sakurai H, Choi Y, Kitamura S, Vaughn DA, Tee JB, Nigam SK (2007) Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol 18:3147–3155

    Article  CAS  PubMed  Google Scholar 

  65. Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D’Agati V, Licht JD, Martin GR, Costantini F (2010) Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet 6:e1000809

    Article  PubMed Central  PubMed  Google Scholar 

  66. Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bertram J, Goodyer P (2008) A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol 19:2027–2034

    Article  CAS  PubMed  Google Scholar 

  67. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM (2008) Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 19:151–157

    Article  PubMed  Google Scholar 

  68. Sigdel TK, Li L, Tran TQ, Khatri P, Naesens M, Sansanwal P, Dai H, Hsieh SC, Sarwal MM (2012) Non-HLA antibodies to immunogenic epitopes predict the evolution of chronic renal allograft injury. J Am Soc Nephrol 23:750–763

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Feng Chen for many useful comments and discussions in preparation of this manuscript. We apologize to all colleagues if we overlooked to cite their work. Work reported in this review was partly supported by the National Institutes of Health grants DK081644 and DK082531 (S.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, T.K., Hoshi, M. & Jain, S. To bud or not to bud: the RET perspective in CAKUT. Pediatr Nephrol 29, 597–608 (2014). https://doi.org/10.1007/s00467-013-2606-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2606-5

Keywords

Navigation