Skip to main content

Advertisement

Log in

Selecting environmental descriptors is critical for modelling the distribution of Antarctic benthic species

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Species distribution models (SDMs) are increasingly used in ecological and biogeographic studies by Antarctic biologists, including for conservation and management purposes. During the modelling process, model calibration is a critical step to ensure model reliability and robustness, especially in the case of SDMs, for which the number of selected environmental descriptors and their collinearity is a recurring issue. Boosted regression trees (BRT) was previously considered as one of the best modelling approach to correct for this type of bias. In the present study, we test the performance of BRT in modelling the distribution of Southern Ocean species using different numbers of environmental descriptors, either collinear or not. Models are generated for six sea star species with contrasting ecological niches and wide distribution ranges over the entire Southern Ocean. For the six studied species, overall modelling performance is not affected by the number of environmental descriptors used to generate models, BRT using the most informative descriptors and minimizing model overfitting. However, removing collinear descriptors also helps reduce model overfitting. Our results confirm that BRTs may perform well and are relevant to deal with complex and redundant environmental information for Antarctic biodiversity distribution studies. Selecting a limited number of non-collinear descriptors before modelling may generate simpler models and facilitate their interpretation. The modelled distributions do not differ noticeably between the different species despite contrasting species ecological niches. This unexpected result stresses important limitations in using SDMs for broad scale spatial studies, based on limited, spatially aggregated data, and low-resolution descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Google Scholar 

  • Anderson RP, Gonzalez JI (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Google Scholar 

  • Anderson RP (2013) A framework for using niche models to estimate impacts of climate change on species distributions. Ann N Y Acad Sci 1297:8–28

    PubMed  Google Scholar 

  • Anderson OF, Guinotte JM, Rowden AA, Tracey DM, Mackay KA, Clark MR (2016) Habitat suitability models for predicting the occurrence of vulnerable marine ecosystems in the seas around New Zealand. Deep Sea Res Part I 115:265–292

    Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Google Scholar 

  • Arthur B, Hindell M, Bester M, De Bruyn PN, Goebel ME, Trathan P, Lea MA (2018) Managing for change: using vertebrate at sea habitat use to direct management efforts. Ecol Ind 91:338–349

    Google Scholar 

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8

    Google Scholar 

  • Ballard G, Jongsomjit D, Veloz SD, Ainley DG (2012) Coexistence of mesopredators in an intact polar ocean ecosystem: the basis for defining a Ross Sea marine protected area. Biol Conserv 156:72–82

    Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Method Ecol Evol 3:327–338

    Google Scholar 

  • Basher Z, Costello MJ (2016) The past, present and future distribution of a deep-sea shrimp in the Southern Ocean. PeerJ 4:e1713

    PubMed  PubMed Central  Google Scholar 

  • Beaumont LJ, Hughes L, Poulsen M (2005) Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol Model 186:251–270

    Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77

    Google Scholar 

  • Bosch I (1989) Contrasting modes of reproduction in two Antarctic asteroids of the genus Porania, with a description of unusual feeding and non-feeding larval types. Biol Bull 177:77–82

    Google Scholar 

  • Bosch I, Pearse JS (1990) Developmental types of shallow-water asteroids of McMurdo Sound, Antarctica. Mar Biol 104:41–46

    Google Scholar 

  • Bradie J, Leung B (2017) A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J Biogeogr 44:1344–1361

    Google Scholar 

  • Brandt A, Van de Putte A, Griffiths HJ (2014) Southern Ocean benthic deep-sea biodiversity and biogeography. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte A, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. SCAR, Cambridge, p 510

    Google Scholar 

  • Braunisch V, Coppes J, Arlettaz R, Suchant R, Schmid H, Bollmann K (2013) Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36:971–983

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont, CA

    Google Scholar 

  • Brueggeman P (1998) Underwater field guide to Ross Island & McMurdo Sound, Antarctica. The National Science Foundation’s Office of Polar Progams sponsored Norbert Wu. Univ. California, San Diego.

  • Bucklin DN, Basille M, Benscoter AM, Brandt LA, Mazzotti FJ, Romanach SS, Speroterra C, Watling JI (2015) Comparing species distribution models constructed with different subsets of environmental predictors. Divers Distrib 21:23–35

    Google Scholar 

  • CCAMLR (2009) Commission for the conservation of Antarctic marine living resources. Conservation measure 91–03. Protection of the South Orkney Islands southern shelf. 2pp. https://www.ccamlr.org/sites/drupal.ccamlr.org/files//91-03.pdf. Accessed 1 Aug 2018

  • CCAMLR (2016) Commission for the conservation of Antarctic marine living resources. Conservation measure 91-05. Ross Sea region marine protected area. pp. 17. https://www.ccamlr.org/sites/drupal.ccamlr.org/files//91-05_2.pdf. Accessed 1 Aug 2018

  • Cheung WW, Lam VW, Pauly D (2008) Modelling present and climate-shifted distribution of marine fishes and invertebrates. Fish Center Res Rep 16:1–76

    Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:55–57

    Google Scholar 

  • Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C, Barnes DK, Bindoff NL, Boyd PW, Brandt A, Costa DP, Davidson AT, Ducklow HW, Emmerson L, Fukuchi M, Gutt J, Hindell MA, Hofmann EE, Hosie GW, Iida T, Jacob S, Johnston NM, Kawaguchi S, Kokubun N, Koubbi P, Lea MA, Makhado A, Massom RA, Meiners K, Meredith MP, Murphy EJ, Nicol S, Reid K, Richerson K, Riddle MJ, Rintoul SR, Smith WO Jr, Southwell C, Stark JS, Sumner M, Swadling KM, Takahashi KT, Trathan PN, Welsford DC, Weimerskirch H, Westwood K, Wienecke BC, Wolf-Gladrow D, Wright SW, Xavier JW, Ziegler P (2014) Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob Change Biol 20:3004–3025

    Google Scholar 

  • Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gutt J, Hodgson DA, Mayewski PA, Summerhayes CP, Turner J, ACCE Consortium (2009) Antarctic climate change and the environment. Ant Sci 21:541–563

    Google Scholar 

  • Convey P, Peck LS (2019) Antarctic environmental change and biological responses. Sci Adv 5:eaaz0888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa GC, Nogueira C, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19:883–899

    Google Scholar 

  • Danis B, Griffiths HJ, Jangoux M (2014) Asteroidea. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte A, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. SCAR, Cambridge, p 510

    Google Scholar 

  • Davis LB, Hofmann EE, Klinck JM, Piñones A, Dinniman MS (2017) Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea, Antarctica. Mar Ecol Prog Ser 584:45–65

    CAS  Google Scholar 

  • Dearborn JH (1977) Foods and feeding characteristics of Antarctic asteroids and ophiuroids. Adaptations within Antarctic ecosystems, 293–326.

  • Dearborn JH, Edwards KC, Fratt DB (1991) Diet, feeding behavior, and surface morphology of the multi-armed Antarctic sea star Labidiaster annulatus (Echinodermata: Asteroidea). Mar Ecol Prog Ser Oldendorf 77:65–84

    Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Google Scholar 

  • De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) (2014) p. 510, Cambridge, SCAR. ISBN 978-0-948277-28-3

  • Dhingra MS, Artois J, Robinson TP, Linard C, Chaiban C, Xenarios ER, Lietchti K, Xiao X, Von Dobschuetz S, Claes F, Newman SH, Dauphin G, Gilbert M (2016) Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 23 44 viruses with spatial cross-validation. elife 5:e19571

    PubMed  PubMed Central  Google Scholar 

  • Dormann CF, Purschke O, Márquez JRG, Lautenbach S, Schröder B (2008) Components of uncertainty in species distribution analysis: a case study of the great grey shrike. Ecology 89:3371–3386

    PubMed  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Garcia Marquéz JR, Gruber B, Lafourcade B, Leitao P, Münkemüller T, McClean C, Osborne PE, Reineking B, Schroder B, Skidmore AK, Zurell D, Lautenbach S (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    CAS  PubMed  Google Scholar 

  • El-Gabbas A, Dormann CF (2018) Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling. Ecol Evol 8:2196–2206

    PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77:802–813

    CAS  PubMed  Google Scholar 

  • Elith J, Graham CH (2009) Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77

    Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Syst 40:677–697

    Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Google Scholar 

  • Fabri-Ruiz S, Saucède T, Danis B, David B (2017) Southern Ocean Echinoids database–an updated version of Antarctic, Sub-Antarctic and cold temperate echinoid database. ZooKeys 697:1

    Google Scholar 

  • Fabri-Ruiz S, Danis B, David B, Saucède T (2018) Can we generate robust species distribution models at the scale of the Southern Ocean? Divers Distrib 25:21–37

    Google Scholar 

  • Feng X, Papeş M (2017) Can incomplete knowledge of species’ physiology facilitate ecological niche modelling? a case study with virtual species. Divers Distrib 23:1157–1168

    Google Scholar 

  • Ferrari R, Malcolm H, Neilson J, Lucieer V, Jordan A, Ingleton T, Figueira W, Johnston N, Hill N (2018) Integrating distribution models and habitat classification maps into marine protected area planning. Estuar Coast Shelf Sci 212:40–50

    Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species: the American bullfrog. Divers Distrib 13:476–485

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G (2018) Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol Model 385:124–132

    Google Scholar 

  • Fordham DA, Mellin C, Russell BD, Akçakaya RH, Bradshaw CJ, Aiello-Lammens ME, Caley JM, Connell SD, Mayfield S, Shepherd SA, Brook BW (2013) Population dynamics can be more important than physiological limits for determining range shifts under climate change. Glob Change Biol 19:3224–3237

    Google Scholar 

  • Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr 27:245–256

    Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge

    Google Scholar 

  • Freer JJ, Tarling GA, Collins MA, Partridge JC, Genner MJ (2019) Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. Divers Distrib 25:1259–1272

    Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol. 1, Springer Series, New York in Statistics

    Google Scholar 

  • Guillaumot C, Martin A, Fabri-Ruiz S, Eléaume M, Saucède T (2016) Echinoids of the Kerguelen Plateau–occurrence data and environmental setting for past, present, and future species distribution modelling. ZooKeys 630:1

    Google Scholar 

  • Guillaumot C, Martin A, Eléaume M, Saucède T (2018a) Methods for improving species distribution models in data-poor areas: example of sub-Antarctic benthic species on the Kerguelen Plateau. Mar Ecol Prog Ser 594:149–164

    Google Scholar 

  • Guillaumot C, Fabri-Ruiz S, Martin A, Eléaume M, Danis B, Féral JP, Saucède T (2018b) Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes. Ecol Evol 8:6210–6224

    PubMed  PubMed Central  Google Scholar 

  • Guillaumot C, Artois J, Saucède T, Demoustier L, Moreau C, Eléaume M, Agüera A, Danis B (2019) Species distribution models in a data-poor and broad scale context. Prog Oceanogr 175:198–207

    Google Scholar 

  • Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr 24:276–292

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney M, Possingham HP, Buckley YM (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    PubMed  PubMed Central  Google Scholar 

  • Gutt J, Zurell D, Bracegridle T, Cheung W, Clark M, Convey P, Danis B, David B, De Broyer C, Prisco G, Griffiths H, Laffont R, Peck LS, Pierrat B, Riddle MJ, Saucède T, Turner J, Verde C, Wang Z, Grimm V (2012) Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept. Polar Res 31:11091

    Google Scholar 

  • Hair J, Black W, Babin B, Anderson R (2014) Multivariate Data Analysis, 7th edn. Pearson Education Limited, Pearson, p 729

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning-data mining inference and prediction. Springer, New York

    Google Scholar 

  • Heikkinen RK, Marmion M, Luoto M (2012) Does the interpolation accuracy of species distribution models come at the expense of transferability? Ecography 35:276–288

    Google Scholar 

  • Henley SF, Schofield OM, Hendry KR, Schloss IR, Steinberg DK, Moffat C, Peck LS, Costa DP, Bakker DCE, Hugues C, Rozema P, Ducklow HW, Abele D, Stefels J, Van Leeuwe MA, Brussaard CPD, Buma AGJ, Kohut J, Meredith MP (2019) Variability and change in the west Antarctic Peninsula marine system: research priorities and opportunities. Progr Oceanogr 173:208–237

    Google Scholar 

  • Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688

    PubMed  Google Scholar 

  • Hipel K, McLeod A (1994) Time series modelling of water resources and environmental systems. Elsevier, Amsterdam, p 1012

    Google Scholar 

  • Hogg OT, Huvenne VA, Griffiths HJ, Linse K (2018) On the ecological relevance of landscape mapping and its application in the spatial planning of very large marine protected areas. Sci Total Environ 626:384–398

    CAS  PubMed  Google Scholar 

  • Hortal J, Jiménez-Valverde A, Gómez JF, Lobo JM, Baselga A (2008) Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117:847–858

    Google Scholar 

  • Ingels J, Vanreusel A, Brandt A, Catarino AI, David B, De Ridder C, Dubois P, Gooday AJ, Martin P, Pasotti F, Robert H (2012) Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa. Ecol Evol 2:453–485

    PubMed  PubMed Central  Google Scholar 

  • Janosik AM, Mahon AH, Scheltema RS, Halanych KM (2008) Short note: life history of the Antarctic sea star Labidiaster annulatus (Asteroidea: Labidiasteridae) revealed by DNA barcoding. Antract Sci 20:563–564

    Google Scholar 

  • Jansen J, Hill NA, Dunstan PK, Eléaume MP, Johnson CR (2018) Taxonomic resolution, functional traits, and the influence of species groupings on mapping Antarctic seafloor biodiversity. Front Ecol Evol 6:81

    Google Scholar 

  • Jerosch K, Scharf FK, Deregibus D, Campana GL, Zacher K, Pehlke H, Falk U, Hass HC, Quartino ML, Abele D (2019) Ensemble modelling of Antarctic macroalgal habitats exposed to glacial melt in a polar fjord. Front Ecol Evol 7:207

    Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350

    PubMed  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, Macdonald DW, Mathai J, Eaton J, Marshall AJ, Semiadi G, Rustam R, Bernard H, Alfred R, Samejima H, Duckworth JW, Breitenmoser-Wuersten C, Belant JL, Hofer H, Wilting A (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Google Scholar 

  • Kühn I (2007) Incorporating spatial autocorrelation may invert observed patterns. Divers Distrib 13:66–69

    Google Scholar 

  • Lawrence JM (2013) Starfish: biology and ecology of the Asteroidea. Johns Hopkins University Press, Baltimore, p 288

    Google Scholar 

  • Leach K, Montgomery WI, Reid N (2016) Modelling the influence of biotic factors on species distribution patterns. Ecol Model 337:96–106

    Google Scholar 

  • Leathwick JR, Elith J, Hastie T (2006) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol Model 199:188–196

    Google Scholar 

  • Leroy B, Delsol R, Hugueny B, Meynard CN, Barhoumi C, Barbet-Massin M, Bellard C (2018) Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr 45:1994–2002

    Google Scholar 

  • Li J, Tran M, Siwabessy J (2016) Selecting optimal random forest predictive models: a case study on predicting the spatial distribution of seabed hardness. PLoS ONE 11:e0149089

    PubMed  PubMed Central  Google Scholar 

  • Linse K, Griffiths HJ, Barnes DK, Clarke A (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep Sea Res Part II: Top Stud Ocean 53:985–1008

    Google Scholar 

  • Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789

    Google Scholar 

  • Loiselle BA, Jørgensen PM, Consiglio T, Jiménez I, Blake JG, Lohmann LG, Montiel OM (2008) Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr 35:105–116

    Google Scholar 

  • Mah CL, Blake DB (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS ONE 7:e35644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mainali KP, Warren DL, Dhileepan K, McConnachie A, Strathie L, Hassan G, Karki D, Shrestha BB, Parmesan C (2015) Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Glob Change Biol 21:4464–4480

    Google Scholar 

  • Marshall CE, Glegg GA, Howell KL (2014) Species distribution modelling to support marine conservation planning: The next steps. Mar Policy 45:330–332

    Google Scholar 

  • Mathewson PD, Moyer-Horner L, Beever EA, Briscoe NJ, Kearney M, Yahn JM, Porter WP (2017) Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. Glob Change Biol 23:1048–1064

    Google Scholar 

  • Maxwell DL, Stelzenmüller V, Eastwood PD, Rogers SI (2009) Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning. J Sea Res 61:258–267

    Google Scholar 

  • McClintock JB, Angus RA, Ho CP, Amsler CD, Baker BJ (2008) Intraspecific agonistic arm-fencing behavior in the Antarctic keystone sea star Odontaster validus influences prey acquisition. Mar Ecol Prog Ser 371:297–300

    Google Scholar 

  • Meier ES, Edwards TC Jr, Kienast F, Dobbertin M, Zimmermann NE (2011) Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica. J Biogeogr 38:371–382

    Google Scholar 

  • Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Google Scholar 

  • Moles J, Figuerola B, Campanyà-Llovet N, Monleón-Getino T, Taboada S, Avila C (2015) Distribution patterns in Antarctic and Subantarctic echinoderms. Polar Biol 38:799–813

    Google Scholar 

  • Moreau C, Saucède T, Jossart Q, Agüera A, Brayard A, Danis B (2017) Reproductive strategy as a piece of the biogeographic puzzle: a case study using Antarctic sea stars (Echinodermata, Asteroidea). J Biogeogr 44:848–860

    Google Scholar 

  • Moreau C, Mah C, Agüera A, Améziane N, Barnes D, Crokaert G, Eléaume M, Griffiths H, Guillaumot C, Hemery L, Jażdżewska A, Jossart Q, Laptikhovsky V, Linse K, Neill K, Sands C, Saucède T, Schiaparelli S, Sicinski J, Vasset N, Danis B (2018) Antarctic and sub-Antarctic Asteroidea database. ZooKeys 747:141

    Google Scholar 

  • Mormède S, Irisson JO, Raymond B (2014) Distribution modelling. In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, d’Udekem d’Acoz C, Van de Putte A, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) Biogeographic atlas of the Southern Ocean. SCAR, Cambridge, p 510

    Google Scholar 

  • Murase H, Kitakado T, Hakamada T, Matsuoka K, Nishiwaki S, Naganobu M (2013) Spatial distribution of Antarctic minke whales (Balaenoptera bonaerensis) in relation to spatial distributions of krill in the Ross Sea, Antarctica. Fish Ocean 22:154–173

    Google Scholar 

  • Nachtsheim DA, Jerosch K, Hagen W, Plötz J, Bornemann H (2017) Habitat modelling of crabeater seals (Lobodon carcinophaga) in the Weddell Sea using the multivariate approach Maxent. Polar Biol 40:961–976

    Google Scholar 

  • Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191–203

    Google Scholar 

  • Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr 34:3–22

    Google Scholar 

  • Olden JD, Lawler JJ, Poff NL (2008) Machine learning methods without tears: a primer for ecologists. Q Rev Biol 83:171–193

    PubMed  Google Scholar 

  • Pertierra LR, Aragón P, Shaw JD, Bergstrom DM, Terauds A, Olalla-Tárraga MÁ (2017) Global thermal niche models of two European grasses show high invasion risks in Antarctica. Glob Change Biol 23:2863–2873

    Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions (MPB-49). vol. 56, Princeton University Press, Princeton

    Google Scholar 

  • Petitpierre B, Broennimann O, Kueffer C, Daehler C, Guisan A (2017) Selecting predictors to maximize the transferability of species distribution models: lessons from cross-continental plant invasions. Glob Ecol Biogeogr 26:275–287

    Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo_absence data. Ecol Appl 19:181–197

    PubMed  Google Scholar 

  • Phillips ND, Reid N, Thys T, Harrod C, Payne NL, Morgan CA, White CA, Porter S, Houghton JD (2017) Applying species distribution modelling to a data poor, pelagic fish complex: the ocean sunfishes. J Biogeogr 44:2176–2187

    Google Scholar 

  • Pierrat B, Saucède T, Laffont R, De Ridder C, Festeau A, David B (2012) Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling. Mar Ecol Prog Ser 463:215–230

    Google Scholar 

  • Qiao H, Soberón J, Peterson AT (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Method Ecol Evol 6:1126–1136

    Google Scholar 

  • Reiss H, Cunze S, König K, Neumann H, Kröncke I (2011) Species distribution modelling of marine benthos: a North Sea case study. Mar Ecol Prog Ser 442:71–86

    Google Scholar 

  • Reiss H, Birchenough S, Borja A, Buhl-Mortensen L, Craeymeersch J, Dannheim J, Darr A, Glaparsoro I, Gogina M, Neumann H, Populus J, Rengstorf AM, Valle M, van Hoey G, Zettler ML, Degrear S (2014) Benthos distribution modelling and its relevance for marine ecosystem management. ICES J Mar Sci 72:297–315

    Google Scholar 

  • Ridgeway G (2015) gbm: generalized boosted regression models. R package version 2.1.1. https://CRAN.R-project.org/package=gbm

  • Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Montfort JJ, Schroder B, Thuiller W, Warton DI, Wintle BA, Hartig F, Dormann CF (2017) Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40:913–929

    Google Scholar 

  • Ross RE, Howell KL (2013) Use of predictive habitat modelling to assess the distribution and extent of the current protection of ‘listed’deep-sea habitats. Divers Distrib 19:433–445

    Google Scholar 

  • Saucède T, Pierrat B, David B, In: De Broyer C, Koubbi P, Griffiths HJ, Raymond B, Udekem d’Acoz C, Van de Putte AP, Danis B, David B, Grant S, Gutt J, Held C, Hosie G, Huettmann F, Post A, Ropert-Coudert Y (eds) (2014) Biogeographic Atlas of the Southern Ocean. Chapter 5.26. Echinoids, p. 510. Cambridge, SCAR. ISBN 978-0-948277-28-3

  • Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568

    Google Scholar 

  • Segurado P, Araujo MB, Kunin WE (2006) Consequences of spatial autocorrelation for niche-based models. J Appl Ecol 43:433–444

    Google Scholar 

  • Stockwell DR, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Google Scholar 

  • Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Glob Ecol Biogeogr 20:904–914

    Google Scholar 

  • Thatje S (2012) Effects of capability for dispersal on the evolution of diversity in Antarctic benthos. Integr Comp Biol 52:470–482

    PubMed  Google Scholar 

  • Tingley R, Vallinoto M, Sequeira F, Kearney MR (2014) Realized niche shift during a global biological invasion. Proc Nat Acad Sci. https://doi.org/10.1073/pnas.1405766111

    Article  PubMed  Google Scholar 

  • Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, Jenkins A, Marshall G, Meredith MP, Roscoe H, Shanklin J, French J, Goosse H, Guglielmin M, Gutt J, Jacobs S, Kennicutt MC, Masson-Delmotte V, Mayewski P, Navarro F, Robinson S, Scambos T, Sparrow M, Summerhayes C, Speer K, Klepikov A (2014) Antarctic climate change and the environment: an update. Polar Rec 50:237–259

    Google Scholar 

  • Václavík T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol Model 220:3248–3258

    Google Scholar 

  • Valavanis VD, Pierce GJ, Zuur AF, Palialexis A, Saveliev A, Katara I, Wang J (2008) Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS. In: Valavanis VD (ed) Essential fish habitat mapping in the Mediterranean. Springer, Dordrecht, pp 5–20

    Google Scholar 

  • Van der Putten WH, Macel M, Visser ME (2010) Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos Trans R Soc Lond B 365:2025–2034

    Google Scholar 

  • van Proosdij AS, Sosef MS, Wieringa JJ, Raes N (2016) Minimum required number of specimen records to develop accurate species distribution models. Ecography 39:542–552

    Google Scholar 

  • Ward G, Hastie T, Barry S, Elith J, Leathwick JR (2009) Presenceonly data and the EM algorithm. Biometrics 65:554–563

    PubMed  PubMed Central  Google Scholar 

  • Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, De Bettignies T, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78

    Google Scholar 

  • Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189

    PubMed  Google Scholar 

  • Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes JA, Guisan A, Heikkinen RK, Hoye TT, Kuhn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Ockinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrop P, Svenning JC (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev 88:15–30

    PubMed  Google Scholar 

  • Wittmann ME, Barnes MA, Jerde CL, Jones LA, Lodge DM (2016) Confronting species distribution model predictions with species functional traits. Ecol Evol 6:873–879

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a “Fonds pour la formation à la Recherche dans l’Industrie et l’Agriculture” (FRIA) and “Bourse Fondation de la mer” grants to C. Guillaumot. This is contribution no. 31 to the vERSO project and no. 10 to the RECTO project (www.rectoversoprojects.be), funded by the Belgian Science Policy Office (BELSPO, contracts no. BR/132/A1/vERSO and no. BR/154/A1/RECTO). This is contribution to the IPEV programs n°1124 REVOLTA and n°1044 PROTEKER. We are grateful to the crew and participants of all the cruises and research programs involved in the capture of the samples included in this dataset (see Moreau et al. 2018): POKER 2, REVOLTA 1 & 2, CEAMARC, JR144, JR179, JR230, JR262, JR275, JR287, JR15005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaumot Charlène.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlène, G., Bruno, D. & Thomas, S. Selecting environmental descriptors is critical for modelling the distribution of Antarctic benthic species. Polar Biol 43, 1363–1381 (2020). https://doi.org/10.1007/s00300-020-02714-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-020-02714-2

Keywords

Navigation