Skip to main content

Advertisement

Log in

Feature Extraction by Using Dual-Generalized Discriminative Common Vectors

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. For more details see the “Appendix”

References

  1. Chandra, B., Sharma, R.K.: Fast learning in deep neural networks. Neurocomputing 171, 1205–1215 (2016). https://doi.org/10.1016/j.neucom.2015.07.093

    Article  Google Scholar 

  2. Chu, D., Liao, L., Ng, M., Wang, X.: Incremental linear discriminant analysis: a fast algorithm and comparisons. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2716–2735 (2015)

    Article  MathSciNet  Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE (2009)

  4. Diaz-Chito, K., Ferri, F.J., Díaz-Villanueva, W.: Null space based image recognition using incremental eigendecomposition. In: Vitriá, J., Sanches, J.M., Hernández, M. (eds.) Pattern Recognition and Image Analysis, vol. 6669, pp. 313–320. Springer, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Diaz-Chito, K., Ferri, F., Diaz-Villanueva, W.: Incremental generalized discriminative common vectors for image classification. IEEE Trans. Neural Netw. Learn. Syst. 26(8), 1761–1775 (2015)

    Article  MathSciNet  Google Scholar 

  6. Duan, G., Chen, Y.: Batch-incremental principal component analysis with exact mean update. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 1397–1400 (2011)

  7. Ferri, F., Diaz, K., Díaz, W.: Efficient dimensionality reduction on undersampled problems through incremental discriminative common vectors. In: The 10th IEEE International Conference on Data Mining Workshops, ICDM Workshops, pp. 1159–1166 (2010)

  8. Ferri, F., Diaz-Chito, K., Diaz-Villanueva, W.: Fast approximated discriminative common vectors using rank-one SVD updates. Neural Inf. Process. 8228, 368–375 (2013)

    Google Scholar 

  9. Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 38(1), 149–161 (2008)

    Article  Google Scholar 

  10. Hall, P., Marshall, D., Martin, R.: Incremental eigenanalysis for classification. In: British Machine Vision Conference, pp. 286–295 (1998)

  11. Hall, P., Marshall, D., Martin, R.: Merging and splitting eigenspace models. IEEE Trans. Pattern Anal. Mach. Intell. 22(9), 1042–1049 (2000)

    Article  Google Scholar 

  12. Jin, B., Jing, Z., Zhao, H.: EVD dualdating based online subspace learning. Math. Probl. Eng. 429451, 21 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Kim, T., Kenneth, K., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discriminant analysis using sufficient spanning set approximations. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07, pp. 1–8 (2007)

  14. Kim, T., Stenger, B., Kittler, J., Cipolla, R.: Incremental linear discriminant analysis using sufficient spanning sets and its applications. Int. J. Comput. Vis. 91(2), 216–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12), vol. 1, pp. 1097–1105. Curran Associates Inc., Lake Tahoe, NV (2012)

  16. Li, Y.: On incremental and robust subspace learning. Pattern Recognit. 37, 1509–1518 (2004)

    Article  MATH  Google Scholar 

  17. Liu, L., Jiang, Y., Zhou, Z.: Least square incremental linear discriminant analysis. In: Ninth IEEE International Conference on Data Mining, 2009. ICDM ’09, pp. 298–306 (2009)

  18. Lu, G., Zou, J., Wang, Y.: Incremental complete LDA for face recognition. Pattern Recognit. 45(7), 2510–2521 (2012)

    Article  MATH  Google Scholar 

  19. Lu, G., Zou, J., Wang, Y.: Incremental learning of discriminant common vectors for feature extraction. Appl. Math. Comput. 218(22), 11269–11278 (2012)

    MATH  Google Scholar 

  20. Martinez, A., Benavente, R.: The AR face database. Technical report 24, Computer Vision Center CVC (1998)

  21. Nene, S., Nayar, S., Murase, H.: Columbia object image library (coil-20). Technical report (1996)

  22. Ozawa, S., Pang, S., Kasabov, N.: Incremental learning of chunk data for online pattern classification systems. IEEE Trans. Neural Netw. 19(6), 1061–1074 (2008)

    Article  Google Scholar 

  23. Pang, S., Ban, T., Kadobayashi, Y., Kasabov, N.K.: LDA merging and splitting with applications to multiagent cooperative learning and system alteration. IEEE Trans. Syst. Man Cybern. B (Cybern.) 42(2), 552–564 (2012)

    Article  Google Scholar 

  24. Pang, S., Ozawa, S., Kasabov, N.: Incremental linear discriminant analysis for classification of data streams. IEEE Trans. Syst. Man Cybern. B 35(5), 905–914 (2005)

    Article  Google Scholar 

  25. Peng, Y., Pang, S., Chen, G., Sarrafzadeh, A., Ban, T., Inoue, D.: Chunk incremental IDR/QR LDA learning. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2013)

  26. Phillips, J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  27. Ren, C., Dai, D.: Incremental learning of bidirectional principal components for face recognition. Pattern Recognit. 43(1), 318–330 (2010)

    Article  MATH  Google Scholar 

  28. Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  29. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: Proceedings of the 5th International Conference on Automatic Face and Gesture Recognition (2002)

  30. Uray, M., Skocaj, D., Roth, P.M., Bischof, H., Leonardis, A.: Incremental LDA learning by combining reconstructive and discriminative approaches. In: Proceedings of the British Machine Vision Conference, pp. 44.1–44.10 (2007)

  31. Zeng, X., Li, G.: Covariance free incremental principal component analysis with exact mean update. J. Comput. Inf. Syst. 5(16), 181–192 (2013)

    Google Scholar 

  32. Zhao, H., Yuen, P.: Incremental linear discriminant analysis for face recognition. IEEE Trans. Syst. Man Cybern. B 38(1), 210–221 (2008)

    Article  Google Scholar 

  33. Zhao, H., Yuen, P., Kwok, J.T.: A novel incremental principal component analysis and its application for face recognition. IEEE Trans. Syst. Man Cybern. B 36, 873–886 (2006)

    Article  Google Scholar 

  34. Zheng, W., Tang, X.: Fast algorithm for updating the discriminant vectors of dual-space LDA. IEEE Trans. Inf. Forensics Secur. 4(3), 418–427 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the project TIN2014-52072-P of the Spanish Ministry of Economy, Industry and Competitiveness with FEDER funds and the CERCA Programme/Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerine Diaz-Chito.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Decomposition of \(S_w^{{\widetilde{X}}}\)

The within-class scatter matrix of each training set is defined as

$$\begin{aligned} S_w^{D}= & {} \sum _{j=1}^c\sum _{i=1}^{m_{D_j}} (x^{i}_{j}-\overline{u}_{D_j})(x^{i}_{j}-\overline{u}_{D_j})^T = {D}_c{D}_c^T,\\ S_w^{I}= & {} \sum _{j=1}^c\sum _{i=1}^{m_{I_j}} (x^{i}_{j}-\overline{u}_{I_j})(x^{i}_{j}-\overline{u}_{I_j})^T = {I}_c{I}_c^T, \end{aligned}$$

such that

$$\begin{aligned} S_w^{{\widetilde{X}}}= & {} \underbrace{\sum _{j=1}^c\sum _{i=1}^{m_j} (x^{i}_{j} -\overline{u}_{{\widetilde{X}}_j}) (x^{i}_{j} -\overline{u}_{{\widetilde{X}}_j})^T}_{{\textcircled {1}}}\\&-\,\underbrace{\sum _{j=1}^c\sum _{i=1}^{m_{D_j}} (x^{i}_{j} -\overline{u}_{{\widetilde{X}}_j}) (x^{i}_{j} -\overline{u}_{{\widetilde{X}}_j})^T}_{{\textcircled {2}}}\\&+\, \underbrace{\sum _{j=1}^c\sum _{i=1}^{m_{I_j}} (x^{i}_{j} - \overline{u}_{{\widetilde{X}}_j}) (x^{i}_{j} -\overline{u}_{{\widetilde{X}}_j})^T}_{{\textcircled {3}}}\\ \end{aligned}$$

where

$$\begin{aligned} {\textcircled {1}}= & {} \sum _{j=1}^c\sum _{i=1}^{m_j}(x^{i}_{j}-{\overline{x}}_{j}+{\overline{x}}_{j}-\overline{u}_{{\widetilde{X}}_j}) (x^{i}_{j}-{\overline{x}}_{j}+{\overline{x}}_{j}-\overline{u}_{{\widetilde{X}}_j})^T\\= & {} \sum _{j=1}^c\sum _{i=1}^{m_j}[\underbrace{(x^{i}_{j} - {\overline{x}}_{j})(x^{i}_{j} - {\overline{x}}_{j})^T}\\&+ \,\underbrace{(x^{i}_{j} - {\overline{x}}_{j})({\overline{x}}_{j}- \overline{u}_{{\widetilde{X}}_j})^T + ({\overline{x}}_{j}- \overline{u}_{{\widetilde{X}}_j})(x^{i}_{j} - {\overline{x}}_{j})^T}\\&+\, \underbrace{({\overline{x}}_{j}- \overline{u}_{{\widetilde{X}}_j})({\overline{x}}_{j}- \overline{u}_{{\widetilde{X}}_j})^T}]\\= & {} S_w^{X} + 0 + \sum _{j=1}^cm_j({\overline{x}}_{j}-\overline{u}_{{\widetilde{X}}_j}) ({\overline{x}}_{j}-\overline{u}_{{\widetilde{X}}_j})^T \\ {\textcircled {2}}= & {} \sum _{j=1}^c\sum _{i=1}^{m_{D_j}} (x^{i}_{j}-\overline{u}_{D_j}+\overline{u}_{D_j}-\overline{u}_{{\widetilde{X}}_j}) (x^{i}_{j}-\overline{u}_{D_j}+\overline{u}_{D_j}-\overline{u}_{{\widetilde{X}}_j})^T\\= & {} \sum _{j=1}^c\sum _{i=1}^{m_{D_j}}[\underbrace{(x^{i}_{j} - \overline{u}_{D_j})(x^{i}_{j} - \overline{u}_{D_j})^T}\\&+ \,\underbrace{(x^{i}_{j} - \overline{u}_{D_j})(\overline{u}_{D_j}- \overline{u}_{{\widetilde{X}}_j})^T + (\overline{u}_{D_j}- \overline{u}_{{\widetilde{X}}_j})(x^{i}_{j} - \overline{u}_{D_j})^T}\\&+ \underbrace{(\overline{u}_{D_j}- \overline{u}_{{\widetilde{X}}_j})(\overline{u}_{D_j}- \overline{u}_{{\widetilde{X}}_j})^T}]\\= & {} S_w^{D} + 0 + \sum _{j=1}^cm_{D_j}(\overline{u}_{D_j}-\overline{u}_{{\widetilde{X}}_j}) (\overline{u}_{D_j}-\overline{u}_{{\widetilde{X}}_j})^T\\ {\textcircled {3}}= & {} \sum _{j=1}^c\sum _{i=1}^{m_{I_j}} (x^{i}_{j}-\overline{u}_{I_j}+\overline{u}_{I_j}-\overline{u}_{{\widetilde{X}}_j}) (x^{i}_{j}-\overline{u}_{I_j}+\overline{u}_{I_j}-\overline{u}_{{\widetilde{X}}_j})^T\\= & {} \sum _{j=1}^c\sum _{i=1}^{m_{I_j}}[\underbrace{(x^{i}_{j} - \overline{u}_{I_j})(x^{i}_{j} - \overline{u}_{I_j})^T}\\&+\, \underbrace{(x^{i}_{j} - \overline{u}_{I_j})(\overline{u}_{I_j}- \overline{u}_{{\widetilde{X}}_j})^T + (\overline{u}_{I_j}- \overline{u}_{{\widetilde{X}}_j})(x^{i}_{j} - \overline{u}_{I_j})^T}\\&+\, \underbrace{(\overline{u}_{I_j}- \overline{u}_{{\widetilde{X}}_j})(\overline{u}_{I_j}- \overline{u}_{{\widetilde{X}}_j})^T}]\\= & {} S_w^{I} + 0 + \sum _{j=1}^cm_{I_j}(\overline{u}_{I_j}-\overline{u}_{{\widetilde{X}}_j}) (\overline{u}_{I_j}-\overline{u}_{{\widetilde{X}}_j})^T \end{aligned}$$

From the above expressions,

$$\begin{aligned} S_w^{{\widetilde{X}}} = S_w^{X}+S_w^{I}+A_XA_X^T + A_IA_I^T - S_w^{D} - A_DA_D^T \end{aligned}$$

with

$$\begin{aligned} A_X= & {} [a_{{X}_{1}} \ldots a_{{X}_{c}}] \quad a_{{X}_{j}} = \sqrt{m_{X_j}} (\overline{u}_{X_j} - \overline{u}_{{\widetilde{X}}_j})\\ A_I= & {} [a_{{I}_{1}} \ldots a_{{I}_{c}}] \quad a_{{I}_{j}} = \sqrt{m_{I_j}} (\overline{u}_{I_j} - \overline{u}_{{\widetilde{X}}_j})\\ A_D= & {} [a_{{D}_{1}} \ldots a_{{D}_{c}}] \quad a_{{D}_{j}} = \sqrt{m_{D_j}} (\overline{u}_{D_j} - \overline{u}_{{\widetilde{X}}_j}) \end{aligned}$$

If the classes in \(I\) are different from the classes in \(X\),

$$\begin{aligned} S_w^{{\widetilde{X}}} = S_w^{X}+S_w^{I}+A_XA_X^T - S_w^{D} - A_DA_D^T \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Chito, K., Martínez del Rincón, J., Rusiñol, M. et al. Feature Extraction by Using Dual-Generalized Discriminative Common Vectors. J Math Imaging Vis 61, 331–351 (2019). https://doi.org/10.1007/s10851-018-0837-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0837-6

Keywords

Navigation