Skip to main content
Log in

Geometric steerable medial maps

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

To provide more intuitive and easily interpretable representations of complex shapes/organs, medial manifolds should reach a compromise between simplicity in geometry and capability of restoring the anatomy/shape of the organ/volume. Existing morphological methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds from a theoretical and a practical point of view. First, we introduce a continuous operator for accurate and efficient computation of medial structures of arbitrary dimension. Second, we present a validation protocol for assessing the suitability of medial surfaces for anatomical representation in medical applications. We evaluate quantitatively the performance of our method with respect to existing approaches and show its higher performance for medical imaging applications in terms of medial simplicity and capability of reconstructing the anatomical volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahuja, N., Chuang, J.H.: Shape representation using a generalized potential field model. IEEE Trans Pattern Anal. Mach. Intell. 19(2), 169–176 (1997)

    Article  Google Scholar 

  2. Amenta, N., Bern, M.: Surface reconstruction by voronoi filtering. Discret. Comput. Geom. 22, 481–504 (1998)

    Article  MathSciNet  Google Scholar 

  3. Amenta, N., Choi, S., Kolluri, R.: The power crust, unions of balls, and the medial axis transform. Comput. Geom. Theory Appl. 19(2–3), 127–153 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertrand, G.: A parallel thinning algorithm for medial surfaces. Pattern Recognit. Lett. 16(9), 979–986 (1995)

    Google Scholar 

  5. Bigun, J., Granlund, G.: Optimal orientation detection of linear symmetry. In: ICCV, pp. 433–438 (1987)

  6. Blum, H.: A Transformation for extracting descriptors of shape. MIT Press, Cambridge (1967)

  7. Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. In: ECCV, pp. 603–618 (2000)

  8. Bouix, S., Siddiqi, K., Tannenbaum, A.: Flux driven automatic centerline extraction. Med. Image Anal. 9(3), 209–221 (2005)

    Article  Google Scholar 

  9. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  10. Chang, M., Leymarie, F., Kimia, B.: 3d shape registration using regularized medial scaffolds. In: Proceedings of the 3D data processing, visualization, and transmission (3DPVT), pp. 987–994. IEEE Computer Society, Washington, DC (2004)

  11. Crouch, J., Pizer, S., Chaney, E., Hu, Y.C., Mageras, G., Zaider, M.: Automated finite-element analysis for deformable registration of prostate images. IEEE Trans. Med. Imaging 26(10), 1379–1390 (2007)

    Article  Google Scholar 

  12. Dey, T.K., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In: Proceedings of the seventh ACM symposium on solid modeling and applications. SMA ’02, pp. 356–366. ACM, New york (2002)

  13. Fletcher, P.T., Lu, C., et al.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  14. Freeman, W., Adelson, E.: of Technology. Media Laboratory. Vision, M.I., Group, M.: The design and use of steerable filters. IEEE Trans. Pattern Ana. Mach. Intell. 13(9), 891–906 (1991)

    Google Scholar 

  15. Garcia-Barnes, J., Gil, D., A. Hernandez, A.: 3d shape registration using regularized medial scaffolds. In: Proceedings of the 3D data processing, visualization, and transmission (3DPVT), pp. 987–994. IEEE Computer Society (2004)

  16. Gil, D., Radeva, P.: Extending anisotropic operators to recover smooth shapes. Comput. Vis. Image Underst. 99(1), 110–125 (2005)

    Article  Google Scholar 

  17. Gray, A.: Tubes. Birkhäuser (2004)

  18. Haralick, R.: Ridges and valleys on digital images. Comput. Vis. Gr. Image Process. 22(10), 28–38 (1983)

    Article  Google Scholar 

  19. Heimann, T., van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  20. Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. In: Geometric Modeling and Processing, pp. 235–247 (2007)

  21. Keim, D., Panse, C., North, S.: Medial-axis-based cartograms. IEEE Comput. Gr. Appl. 25, 60–68 (2005)

    Article  Google Scholar 

  22. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. Gr. Model Imaging Process. 56(6), 462–478 (1994)

    Article  Google Scholar 

  23. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)

    Article  Google Scholar 

  24. Linguraru, L., Pura, J., Chowdhury, A., Summers, R.: Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization. In: Med Image Comput Comput Assist Interv., LNCS, vol. 13(Pt 3), pp. 89–96. Springer, Berlin (2010)

  25. Liu, X., Linguraru, M., Yao, J., Summers, R.: Organ pose distribution model and an MAP framework for automated abdominal multi-organ localization, pp. 393–402. Springer, Berlin, (2010)

  26. Lopez, A., Lumbreras, F., Serrat, J., Villanueva, J.: Evaluation of methods for ridge and valley detection. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 327–335 (1999)

    Article  Google Scholar 

  27. Palagyi, K., Kuba, A.: A parallel 3d 12-subiteration thinning algorithm. Gr. Models Image Process. 61(4), 199–221 (1999)

    Article  Google Scholar 

  28. Pizer, S., Fletcher, P., et al.: Deformable M-Reps for 3D medical image segmentation. Int. J. Comput. Vis. 55(2), 85–106 (2003)

    Article  Google Scholar 

  29. Pizer, S., Fletcher, P., et al.: A method and software for segmentation of anatomic object ensembles by deformable M-Reps. Med. Phys. 32(5), 1335–1345 (2005)

    Article  Google Scholar 

  30. Pudney, C.: Distance-ordered homotopic thinning: a skeletonization algorithm for 3D digital images. Comput. Vis. Image Underst. 72(2), 404–413 (1998)

    Article  Google Scholar 

  31. Sheehy, D., Armstrong, C., Robinson, D.: Shape description by medial surface construction. IEEE Trans. Vis. Comput. Gr. 2(1), 62–72 (1996)

    Article  Google Scholar 

  32. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.: Hamilton-Jacobi skeletons. Int. J. Comput. Vis. 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  33. Stough, J., Broadhurst, R., Pizer, S., Chaney, E.: Regional appearance in deformable model segmentation, vol. 4584, pp. 532–543 (2007)

  34. Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Med. Image Anal. 7(3), 207–220 (2003)

    Google Scholar 

  35. Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Med. Image Anal. 8(3), 197–203 (2004)

    Google Scholar 

  36. Sun, H., Avants, B., Frangi, A., Sukno, F., Gee, J., Yushkevich, P.: Cardiac medial modeling and time-course heart wall thickness analysis. In: MICCAI, vol. 5242, pp. 766–773 (2008)

  37. Sun, H., Frangi, A.F., Wang, H., et al.: Automatic cardiac mri segmentation using a biventricular deformable medial model. In: MICCAI, vol. 6361, pp. 468–475. Springer, Berlin (2010)

  38. Svensson, S., Nyström, I., di Baja, G.S.: Curve skeletonization of surface-like objects in 3d images guided by voxel classification. Pattern Recognit. Lett. 23(12), 1419–1426 (2002)

    Google Scholar 

  39. Terriberry, T., Gerig, G.: A continuous 3-d medial shape model with branching. In: International workshop on mathematical foundations of computational anatomy MFCA-2006, in conjunction with MICCAI (2006)

  40. Udrea, R.M., Vizireanu, N.: Iterative generalization of morphological skeleton. J. Electron. Imaging 16(1), 010,501–010,501-3 (2007)

    Google Scholar 

  41. Vera, S., Gil, D., Borràs, A., Sánchez, X., Pérez, F., Linguraru, M.G., Ballester, M.A.G.: Computation and evaluation of medial surfaces for shape representation of abdominal organs. In: LNCS. Springer, Berlin (2010)

  42. Vera, S., Gonzalez, M.A., Gil, D.: A medial map capturing the essential geometry of organs. In: IEEE Proceedings of ISBI (2012)

  43. Vera, S., González, M.A., Linguraru, M.G., Gil, D.: Optimal medial surface generation for anatomical volume representations. In: Abdominal imaging. Computational and clinical applications. Lecture notes in computer science, vol. 7601, pp. 265–273 (2012)

  44. Vizireanu, D.N.: Generalizations of binary morphological shape decomposition. J. Electron. Imaging 16(1), 013,002 (2007)

    Google Scholar 

  45. Vizireanu, D.N.: Morphological shape decomposition interframe interpolation method. J. Electron. Imaging 17(1), 013,007–013,007–5 (2008)

    Google Scholar 

  46. Vizireanu, N., Halunga, S., Marghescu, G.: Morphological skeleton decomposition interframe interpolation method. J. Electron. Imaging 19(2), 023,018–023,018–3 (2010)

    Google Scholar 

  47. Vizireanu, N., Udrea, R.M.: Visual-oriented morphological foreground content grayscale frames interpolation method. J. Electron. Imaging 18(2), 020,502 (2009)

    Google Scholar 

  48. Wade, L., Parent, R.: Automated generation of control skeletons for use in animation. Vis. Comput. 18, 97–110 (2002)

    Article  MATH  Google Scholar 

  49. Wilcoxon, F.: Individual comparisons by ranking methods. Biometr. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  50. Yao, J., Summers, R.: Statistical location model for abdominal organ localization. In: MICCAI, LNCS, vol. 12(Pt 2), pp. 9–17. Springer, Berlin (2009)

  51. Yushkevich, P.: Continuous medial representation of brain structures using the biharmonic PDE. NeuroImage 45(1), 99–110 (2009)

    Article  MathSciNet  Google Scholar 

  52. Yushkevich, P., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Med. Imaging 25(12), 1547–1564 (2006)

    Article  Google Scholar 

  53. Yushkevich, P., Zhang, H., Simon, T., Gee, J.: Structure-specific statistical mapping of white matter tracts. NeuroImage 41(2), 448–461 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish projects TIN2009-13618, TIN2012-33116, CSD2007-00018 and the Generalitat de Catalunya project 2009-TEM-00007. Debora Gil has been supported by the Ramon y Cajal Program of the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vera, S., Gil, D., Borràs, A. et al. Geometric steerable medial maps. Machine Vision and Applications 24, 1255–1266 (2013). https://doi.org/10.1007/s00138-013-0490-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-013-0490-4

Keywords

Navigation