Skip to main content

3D Stable Spatio-Temporal Polyp Localization in Colonoscopy Videos

  • Conference paper
  • First Online:
Computer-Assisted and Robotic Endoscopy (CARE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9515))

Included in the following conference series:

Abstract

Computational intelligent systems could reduce polyp miss rate in colonoscopy for colon cancer diagnosis and, thus, increase the efficiency of the procedure. One of the main problems of existing polyp localization methods is a lack of spatio-temporal stability in their response. We propose to explore the response of a given polyp localization across temporal windows in order to select those image regions presenting the highest stable spatio-temporal response. Spatio-temporal stability is achieved by extracting 3D watershed regions on the temporal window. Stability in localization response is statistically determined by analysis of the variance of the output of the localization method inside each 3D region. We have explored the benefits of considering spatio-temporal stability in two different tasks: polyp localization and polyp detection. Experimental results indicate an average improvement of \(21.5\,\%\) in polyp localization and \(43.78\,\%\) in polyp detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerr, J., Day, P., Broadstock, M., Weir, R., Bidwell, S.: Systematic review of the effectiveness of population screening for colorectal cancer (2007)

    Google Scholar 

  2. Quintero, E., Castells, A., Bujanda, L., Cubiella, J., Salas, D., Lanas, Á., Andreu, M., Carballo, F., Morillas, J.D., Hernández, C., et al.: Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening. N. Engl. J. Med. 366(8), 697–706 (2012)

    Article  Google Scholar 

  3. van Rijn, J.C., Reitsma, J.B., Stoker, J., Bossuyt, P.M., van Deventer, S.J., Dekker, E.: Polyp miss rate determined by tandem colonoscopy: a systematic review. Am. J. Gastroenterol. 101(2), 343–350 (2006)

    Article  Google Scholar 

  4. Barclay, R.L., Vicari, J.J., Doughty, A.S., Johanson, J.F., Greenlaw, R.L.: Colonoscopic withdrawal times and adenoma detection during screening colonoscopy. N. Engl. J. Med. 355(24), 2533–2541 (2006)

    Article  Google Scholar 

  5. Bernal, J., Vilariño, F., Sánchez, F.J.: Towards intelligent systems for colonoscopy. In: Miskovitz, P. (ed.) Colonoscopy, pp. 245–270. INTECH (2011). Doi:10.5772/19748. http://www.intechopen.com/books/colonoscopy/towards-intelligent-systems-for-colonoscopy. ISBN: 978-953-307-568-6

    Google Scholar 

  6. Iwahori, Y., Shinohara, T., Hattori, A., Woodham, R.J., Fukui, S., Bhuyan, M., Kasugai, K.: Automatic polyp detection in endoscope images using a hessian filter. In: Proceedings of MVA, pp. 21–24 (2013)

    Google Scholar 

  7. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 43, 99–111 (2015)

    Article  Google Scholar 

  8. Hwang, S., Oh, J., Tavanapong, W., Wong, J., De Groen, P.C.: Polyp detection in colonoscopy video using elliptical shape feature. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 2, pp. II-465. IEEE (2007)

    Google Scholar 

  9. Tajbakhsh, N., Chi, C., Gurudu, S.R., Liang, J.: Automatic polyp detection from learned boundaries. In: Proceedings of ISBI , pp. 97–100. IEEE (2014)

    Google Scholar 

  10. Wang, Y., Tavanapong, W., Wong, J., Oh, J., de Groen, P.: Part-based multiderivative edge cross-sectional profiles for polyp detection in colonoscopy. IEEE J. Biomed. Health Inform. 18, 1379–1389 (2014)

    Article  Google Scholar 

  11. Ameling, S., Wirth, S., Paulus, D., Lacey, G., Vilarino, F.: Texture-based polyp detection in colonoscopy. In: Meinzer, H.-P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2009. Informatik aktuell, pp. 346–350. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Iakovidis, D.K., Maroulis, D.E., Karkanis, S.A., Brokos, A.: A comparative study of texture features for the discrimination of gastric polyps in endoscopic video. In: Proceedings of IEEE CBMS, pp. 575–580. IEEE (2005)

    Google Scholar 

  13. Coimbra, M.T., Cunha, J.P.S.: MPEG-7 visual descriptors-contributions forautomated feature extraction in capsule. IEEE Trans. Circuits Syst. Video Technol. 16(5), 628–637 (2006)

    Article  Google Scholar 

  14. Tajbakhsh, N., Liang, J., Gurudu, S.R.: Asu-mayo polyp detection database (2015)

    Google Scholar 

  15. Park, S.Y., Sargent, D., Spofford, I., Vosburgh, K.G., et al.: A colon video analysis framework for polyp detection. IEEE Trans. Biomed. Eng. 59(5), 1408–1418 (2012)

    Article  Google Scholar 

  16. Bernal, J., Gil, D., Sánchez, C., Sánchez, F.J.: Discarding non informative regions for efficient colonoscopy image analysis. In: Luo, X., Reich, T., Mirota, D., Soper, T. (eds.) CARE 2014. LNCS, vol. 8899, pp. 1–10. Springer, Heidelberg (2014)

    Google Scholar 

  17. Lin, G., Adiga, U., Olson, K., Guzowski, J.F., Barnes, C.A., Roysam, B.: A hybrid 3d watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part A 56(1), 23–36 (2003)

    Article  Google Scholar 

  18. Kuhnigk, J.-M., Hahn, H., Hindennach, M., Dicken, V., Krass, S., Peitgen, H.-O.: Lung lobe segmentation by anatomy-guided 3d watershed transform. In: Medical Imaging, pp. 1482–1490. International Society for Optics and Photonics (2003)

    Google Scholar 

  19. Cohen, J.: Statistical Powe Analysis For the Behavioral Sciences. Lawrence Erlbaum Associates, Hillsdale (1988)

    Google Scholar 

  20. Tukey, J.W.: Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Work supported by the Spanish project TIN2012-33116, DPI2015-65286-R, and the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya 2014-SGR-1470. Debora Gil is a Serra Hunter fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gil, D., Javier Sánchez, F., Fernández-Esparrach, G., Bernal, J. (2016). 3D Stable Spatio-Temporal Polyp Localization in Colonoscopy Videos. In: Luo, X., Reichl, T., Reiter, A., Mariottini, GL. (eds) Computer-Assisted and Robotic Endoscopy. CARE 2015. Lecture Notes in Computer Science(), vol 9515. Springer, Cham. https://doi.org/10.1007/978-3-319-29965-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29965-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29964-8

  • Online ISBN: 978-3-319-29965-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics