Skip to main content

An Application for Efficient Error-Free Labeling of Medical Images

  • Chapter
Multimodal Interaction in Image and Video Applications

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 48))

  • 1356 Accesses

Abstract

In this chapter we describe an application for efficient error-free labeling of medical images. In this scenario, the compilation of a complete training set for building a realistic model of a given class of samples is not an easy task, making the process tedious and time consuming. For this reason, there is a need for interactive labeling applications that minimize the effort of the user while providing error-free labeling. We propose a new algorithm that is based on data similarity in feature space. This method actively explores data in order to find the best label-aligned clustering and exploits it to reduce the labeler effort, that is measured by the number of “clicks. Moreover, error-free labeling is guaranteed by the fact that all data and their labels proposals are visually revised by en expert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bashar, M.K., et al.: Automatic detection of informative frames from wireless capsule endoscopy images. Medical Image Analysis 14(3), 449–470 (2010)

    Article  Google Scholar 

  2. Bekel, H., Heidemann, G., Ritter, H.: Interactive image data labeling using self-organizing maps in an augmented reality scenario. Neural Networks 18(5-6), 566–574 (2005)

    Article  Google Scholar 

  3. Biswas, A., Jacobs, D.: Active image clustering: Seeking constraints from humans to complement algorithms. In: CVPR (2012)

    Google Scholar 

  4. Coimbra, M.T., Cunha, J.P.S.: MPEG-7 visual descriptors: Contributions for automated feature extraction in capsule endoscopy. IEEE TCSVT 16(5), 628–637 (2006)

    Google Scholar 

  5. Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 208–215. ACM (2008)

    Google Scholar 

  6. Donmez, P., Carbonell, J.G., Bennett, P.N.: Dual Strategy Active Learning. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 116–127. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Drozdzal, M., Seguí, S., Malagelada, C., Azpiroz, F., Vitrià, J., Radeva, P.: Interactive Labeling of WCE Images. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 143–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Dwyer, K., Holte, R.: Decision Tree Instability and Active Learning. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 128–139. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Freund, Y., Sebastian Seung, H., Shamir, E., Tishby, N.: Selective sampling using the query by committee algorithm. Mach. Learn. 28, 133–168 (1997)

    Article  MATH  Google Scholar 

  10. Hospedales, T.M., Gong, S., Xiang, T.: Finding rare classes: Active learning with generative and discriminative models. IEEE Transactions on Knowledge and Data Engineering 99(PrePrints) (2011)

    Google Scholar 

  11. Igual, L., et al.: Automatic discrimination of duodenum in wireless capsule video endoscopy. IFMBE Proceedings 22, 1536–1539 (2008)

    Article  Google Scholar 

  12. Jung, Y.S., et al.: Active blood detection in a high resolution capsule endoscopy using color spectrum transformation. In: ICBEI, pp. 859–862 (2008)

    Google Scholar 

  13. Kang, J., Doraiswami, R.: Real-time image processing system for endoscopic applications. In: IEEE CCECE 2003, vol. 3, pp. 1469–1472 (2003)

    Google Scholar 

  14. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (2004)

    Google Scholar 

  15. Malagelada, C., De lorio, F., Seguí, S., Mendez, S., Drozdzal, M., Vitria, J., Radeva, P., Santos, J., Accarino, A., Malagelada, J.R., Azpiroz, F.: Functional gut disorders or disordered gut function? small bowel dysmotility evidenced by an original technique. Neurogastroenterology and Motility 24(3), 223-e105 (2012)

    Google Scholar 

  16. Malagelada, C., et al.: New insight into intestinal motor function via noninvasive endoluminal image analysis. Gastroenterology 135(4), 1155–1162 (2008)

    Article  Google Scholar 

  17. McCallum, A., Nigam, K.: Employing em and pool-based active learning for text classification. In: Proceedings of the Fifteenth International Conference on Machine Learning, ICML 1998, pp. 350–358. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  18. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 79. ACM, New York (2004)

    Chapter  Google Scholar 

  19. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)

    Google Scholar 

  20. Tian, Y.: A face annotation framework with partial clustering and interactive labeling. In: International Conf. on Computer Vision and Pattern Recognition, p. 7 (2007)

    Google Scholar 

  21. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2002)

    MATH  Google Scholar 

  22. Vilarino, F., et al.: Intestinal motility assessment with video capsule endoscopy: Automatic annotation of phasic intestinal contractions. IEEE TMI 29(2), 246–259 (2010)

    Google Scholar 

  23. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58(301), 236–244 (1963)

    Article  MathSciNet  Google Scholar 

  24. Xu, Z., Yu, G., Tresp, V., Xu, X., Wang, J.: Representative Sampling for Text Classification Using Support Vector Machines. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 393–407. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  25. Zhang, L., Tong, Y., Ji, Q.: Active Image Labeling and Its Application to Facial Action Labeling. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 706–719. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drozdzal, M., Seguí, S., Radeva, P., Malagelada, C., Azpiroz, F., Vitrià, J. (2013). An Application for Efficient Error-Free Labeling of Medical Images. In: Multimodal Interaction in Image and Video Applications. Intelligent Systems Reference Library, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35932-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35932-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35931-6

  • Online ISBN: 978-3-642-35932-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics