Skip to main content

Coloresia: An Interactive Colour Perception Device for the Visually Impaired

  • Chapter
Multimodal Interaction in Image and Video Applications

Abstract

A significative percentage of the human population suffer from impairments in their capacity to distinguish or even see colours. For them, everyday tasks like navigating through a train or metro network map becomes demanding. We present a novel technique for extracting colour information from everyday natural stimuli and presenting it to visually impaired users as pleasant, non-invasive sound. This technique was implemented inside a Personal Digital Assistant (PDA) portable device. In this implementation, colour information is extracted from the input image and categorised according to how human observers segment the colour space. This information is subsequently converted into sound and sent to the user via speakers or headphones. In the original implementation, it is possible for the user to send its feedback to reconfigure the system, however several features such as these were not implemented because the current technology is limited.We are confident that the full implementation will be possible in the near future as PDA technology improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, D.H.: Color constancy. Vision Research 51, 674–700 (2011)

    Article  Google Scholar 

  2. Brown, R.O., MacLeod, D.I.A.: Color appearance depends on the variance of surround colors. Current Biology 7, 844–849 (1997)

    Article  Google Scholar 

  3. Otazu, X., Parraga, C.A., Vanrell, M.: Towards a unified model for chromatic induction. Journal of Vision 10(12), article 5 (2010)

    Google Scholar 

  4. Berlin, B., Kay, P.: Basic color terms: their universality and evolution, Berkeley, Oxford (1969)

    Google Scholar 

  5. Genetics Home Reference: Color vision deficiency, National Library of Medicine, http://ghr.nlm.nih.gov/condition/color-vision-deficiency

  6. Vision Problems in the U.S.: Prevalence of Adult Vision Impairment and Age-Related Eye Disease in America. Prevent Blindness America and the National Eye Institute (2008), http://www.preventblindness.org/vpus/2008_update/

  7. Derefeldt, G., Swartling, T.: Color Concept Retrieval by Free Color Naming - Identification of up to 30 Colors without Training. Displays 16, 69–77 (1995)

    Article  Google Scholar 

  8. Yendrikhovskij, S.N.: A Computational Model of Colour Categorization. Color Research and Application 26, S235–S238 (2001)

    Article  Google Scholar 

  9. Seaborn, M., Hepplewhite, L., Stonham, J.: Fuzzy colour category map for the measurement of colour similarity and dissimilarity. Pattern Recognition 38, 165–177 (2005)

    MATH  Google Scholar 

  10. Mojsilovic, A.: A computational model for color naming and describing color composition of images. IEEE - Transactions on Image Processing 14, 690–699 (2005)

    Article  Google Scholar 

  11. Benavente, R., Vanrell, M., Baldrich, R.: Parametric fuzzy sets for automatic color naming. Journal of the Optical Society of America A 25, 2582–2593 (2008)

    Article  Google Scholar 

  12. Menegaz, G., Troter, A.L., Sequeira, J., Boi, J.M.: A discrete model for color naming. EURASIP J. Appl. Signal Process. 2007(1), 113 (2007)

    Google Scholar 

  13. Wang, Z., Luo, M.R., Kang, B., Choh, H., Kim, C.: An Algorithm for Categorising Colours into Universal Colour Names. In: 3rd European Conference on Colour in Graphics, Imaging, and Vision (2006)

    Google Scholar 

  14. Hansen, T., Walter, S., Gegenfurtner, K.R.: Effects of spatial and temporal context on color categories and color constancy. Journal of Vision 7 (2007)

    Google Scholar 

  15. Moroney, N.: Unconstrained web-based color naming experiment. In: SPIE Color Imaging VIII: Processing, Hardcopy, and Applications (2003)

    Google Scholar 

  16. Boynton, R.M., Olson, C.X.: Salience of Chromatic Basic Color Terms Confirmed by 3 Measures. Vision Research 30, 1311–1317 (1990)

    Article  Google Scholar 

  17. Hardin, C.L., Maffi, L.: Color categories in thought and language. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  18. Webster, M.A., Kay, P.: Individual and population differences in focal colors. In: MacLaury, R.E., Paramei, G.V., Dedrick, D. (eds.) Anthropology of Color: Interdisciplinary Multilevel Modeling, pp. 29–54. J. Benjamins Pub. Co., Amsterdam (2007)

    Google Scholar 

  19. Maurer, D., Pathman, T., Mondloch, C.J.: The shape of boubas: sound-shape correspondences in toddlers and adults. Developmental Science 9, 316–322 (2006)

    Article  Google Scholar 

  20. Lewis, J.W., Beauchamp, M.S., DeYoe, E.A.: A comparison of visual and auditory motion processing in human cerebral cortex. Cerebral Cortex 10, 873–888 (2000)

    Article  Google Scholar 

  21. Visual Music by Maura McDonnell (2002), http://homepage.tinet.ie/~musima/visualmusic/visualmusic.htm

  22. Harbisson, N.: Sonochromatic cyborg, http://www.harbisson.com (cited July 01, 2012)

  23. Google Play, http://play.google.com/store (cited July 01, 2012)

  24. Evans, B.: Foundations of a visual music. Computer Music Journal 29, 11–24 (2005)

    Article  Google Scholar 

  25. Cronly-Dillon, J., Persaud, K., Gregory, R.P.F.: The perception of visual images encoded in musical form: a study in cross-modality infomration transfer. Proc. Roy. Soc. B 266, 2427–2433 (1999)

    Article  Google Scholar 

  26. Bologna, G., Deville, B., Pun, T., Vickenbosch, M.: Transforming 3D coloured pixels into musical instrument notes for vision substitution applications. EURASIP J. Im. Video Process. 2007, 76204 (2007)

    Article  Google Scholar 

  27. Rossi, J., Perales, F.J., Varona, J., Roca, M.: COL.diesis: transforming colour into melody and implementing the result in a colour sensor device. In: International Conference on Information Visualisation (2009)

    Google Scholar 

  28. Hurlbert, A.: Colour constancy. Current Biology 21(17), 906–907 (2007)

    Article  Google Scholar 

  29. Hurlbert, A., Wolf, K.: Color contrast: a contributory mechanism to color constancy. Progress on Brain Research 144 (2004)

    Google Scholar 

  30. Worthey, J.A., Brill, M.H.: Heuristic analysis of von kries color constancy. Journal of the Optical Society of America A 3, 1708–1712 (1986)

    Article  Google Scholar 

  31. Buchsbaum, G.: A spatial processor model for object colour perception. Journal Franklin Institute 310, 1–26 (1980)

    Article  Google Scholar 

  32. Land, E.H.: The retinex. American Scientist 52, 247–264 (1964)

    Google Scholar 

  33. Finlayson, G.D., Trezzi, E.: Shades of gray and colour constancy. In: Color Imaging Conference (2004)

    Google Scholar 

  34. van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Transactions on Image Processing 16, 2207–2214 (2007)

    Article  MathSciNet  Google Scholar 

  35. Lee, H.: Method for computing the scene-illuminant chromaticity from specular highlights. Journal of the Optical Society of America A 3, 1694–1699 (1986)

    Article  Google Scholar 

  36. Klinker, G., Shafer, S., Kanade, T.: A physical approach to color image understanding. International Journal of Computer Vision 4, 7–38 (1990)

    Article  Google Scholar 

  37. Funt, B.V., Drew, M.S., Ho, J.: Color constancy from mutual reflection. International Journal of Computer Vision 6, 5–24 (1991)

    Article  Google Scholar 

  38. Finlayson, G.D., Hordley, S.D., Hubel, P.M.: Color by correlation: A simple, unifying framework for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1209–1221 (2001)

    Article  Google Scholar 

  39. Sapiro, G.: Color and illuminant voting. IEEE Transactions on Image Processing 21, 1210–1215 (1999)

    Google Scholar 

  40. Vazquez-Corral, J., Vanrell, M., Baldrich, R., Tous, F.: Color Constancy by Category Correlation. IEEE Transactions on Image Processing 21, 1997–2007 (2012)

    Article  MathSciNet  Google Scholar 

  41. Changeux, J.P.: Du vrai, du beau, du bien: Une nouvelle approche neuronale, Odile Jacob (2010)

    Google Scholar 

  42. Ward, J., Huckstep, B., Tsakanikos, E.: Sound-colour synaesthesia: to what extent does it use cross-modal mechanisms common to us all? Cortex 42, 264–280 (2006)

    Article  Google Scholar 

  43. Peeters, G., Giordano, B.L., Susini, P., Misdariis, N., McAdams, S.: The Timbre Toolbox: extracting audio descriptors from musical signals. Journal of the Acoustic Society of America 130, 2902–2916 (2011)

    Article  Google Scholar 

  44. Herrera-Boyer, P., Klapuri, A., Davy, M.: Automatic Classification of Pitched Musical Instrument Sounds. Signal Processing Methods for Music Transcription, Part II, 163–200 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel Gonzalez .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gonzalez, A., Benavente, R., Penacchio, O., Vazquez-Corral, J., Vanrell, M., Parraga, C.A. (2013). Coloresia: An Interactive Colour Perception Device for the Visually Impaired. In: Multimodal Interaction in Image and Video Applications. Intelligent Systems Reference Library, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35932-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35932-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35931-6

  • Online ISBN: 978-3-642-35932-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics