Skip to main content

Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2683))

Abstract

Poor convergence to concave shapes is a main limitation of snakes as a standard segmentation and shape modelling technique. The gradient of the external energy of the snake represents a force that pushes the snake into concave regions, as its internal energy increases when new inflexion points are created. In spite of the improvement of the external energy by the gradient vector flow technique, highly non convex shapes can not be obtained, yet. In the present paper, we develop a new external energy based on the geometry of the curve to be modelled. By tracking back the deformation of a curve that evolves by minimum curvature flow, we construct a distance map that encapsulates the natural way of adapting to non convex shapes. The gradient of this map, which we call curvature vector flow (CVF), is capable of attracting a snake towards any contour, whatever its geometry. Our experiments show that, any initial snake condition converges to the curve to be modelled in optimal time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numerische Mathematik 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Caselles, V., Kimmel, R.: G. Sapiro Geodesic Active Contours. Int. J. Comp. Vision

    Google Scholar 

  3. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. Int.Journal Comp. Vision 24(1), 57–78 (1997)

    Article  Google Scholar 

  4. Gil, D., Radeva, P.: Regularized curvature flow. CVC Tech. Report no 63 (2002)

    Google Scholar 

  5. Gil, D., Radeva, P.: Curvature based Distance Maps. CVC Tech. Report no 70 (2003)

    Google Scholar 

  6. Gil, D., Radeva, P.: Anisotropic Contour Completion, ICIP 2003 (submmited)

    Google Scholar 

  7. Evans, L.C.: Partial Differential equations. In: Berkeley Math. Lect. Notes, vol. 3B

    Google Scholar 

  8. Forsey, D.R., Bartels, R.H.: Surface Fitting with Hierarchical Splines. Computer Graphics (April 1995)

    Google Scholar 

  9. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differential Geometry 26, 285–314 (1986)

    MathSciNet  Google Scholar 

  10. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differential Geometry 23, 69–96 (1986)

    MATH  MathSciNet  Google Scholar 

  11. Gage, M.: Curve shortening makes convex curves circular. Invent. Math 76, 357–364 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guichard, F., Morel, J.M.: Mathematical Models in Image Processing. Advanced Courses on Mathematical Aspects on Image Processing

    Google Scholar 

  13. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Scheweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proc. ACM SIGGRAPH, pp. 295–302 (July 1994)

    Google Scholar 

  14. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int.Journal of Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  15. Knoll, Ch., Alcañiz, M., Grau, V., Montserrat, C., Juan, M.C.: Outlining of the prostate using snakes with shapes restrictions based on the wavelet transform. Pattern Recognition 32, 1767–1781 (1999)

    Article  Google Scholar 

  16. Rudin, W.: Complex and Real Analysis. McGraw-Hill, Inc.New York

    Google Scholar 

  17. Malladi, R., Sethian, J.A.: Image Processing: Flows under min-max curvature and mean curvature. Graph. Models and Image Process 58(2) (March 1996)

    Google Scholar 

  18. Sapiro, G., Kimia, B.B., Kimmel, R., Shaked, D., Bruckstein, A.: Implementing continuous-scale morphology. Pattern Recognition 26(9) (1992)

    Google Scholar 

  19. Siddiqi, K., Tannenbaum, A., Zucker, S.W.: A Hanmiltonian Aaproach to the Eikonal Equation. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 1–13. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Sun, C., Pallotino, S.: Circular shortest path on regular grids. In: Asian Conference on Computer Vision, Melbourne, Australia, pp. 852–857 (January 2002)

    Google Scholar 

  21. Tari, Z.S.G., Shah, J., Pien, H.: Extraction of shape skeletons from grayscale images. Comp. Vision and Image Understanding 66, 133–146 (1997)

    Article  Google Scholar 

  22. Xu, C., Prince, J.L.: Snakes, shapes and gradient vector flow. IEEE Trans. on Image Proc. 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient Vector Flow Fast Geodesic Active Contours. In: ICCV-WS 1999 (2001)

    Google Scholar 

  24. Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Processing, An International Journal 71(2), 132–139 (1998)

    Google Scholar 

  25. Zhang, D., Herbert, M.: Harmonic shape images: a representation for 3-d free-form surfaces based on energy minimization. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 30–43. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gil, D., Radeva, P. (2003). Curvature Vector Flow to Assure Convergent Deformable Models for Shape Modelling. In: Rangarajan, A., Figueiredo, M., Zerubia, J. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2003. Lecture Notes in Computer Science, vol 2683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45063-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45063-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40498-9

  • Online ISBN: 978-3-540-45063-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics