Skip to main content

Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces

  • Chapter
  • First Online:

Abstract

Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.greyc.ensicaen.fr/iapr-tc15/index.php.

References

  1. Duda R, Hart P, Stork D (2000) Pattern classification, vol 2. Wiley Interscience, New York

    Google Scholar 

  2. Kuncheva L (2004) Combining pattern classifiers: Methods and algorithms. Wiley, New York

    Book  MATH  Google Scholar 

  3. Byun H (2003) A survey on pattern recognition applications of support vector machines. Int J Pattern Recogn Artif Intell 17(3):459–486

    Article  Google Scholar 

  4. De Sa J (2001) Pattern recognition: Concepts, methods, and applications. Springer, Berlin

    Google Scholar 

  5. Friedman M, Kandel A (1999) Introduction to pattern recognition. World Scientific, Singapore

    Google Scholar 

  6. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Riesen K (2010) Classification and clustering of vector space embedded graphs. PhD thesis, University of Bern, Switzerland

    Google Scholar 

  8. Bunke H, Riesen K (2011) Recent advances in graph-based pattern recognition with applications in document analysis. Pattern Recogn 44:1057–1067

    Article  MATH  Google Scholar 

  9. Riesen K, Bunke H (2009) Graph classification based on vector space embedding. Int J Pattern Recogn Artif Intell 23(6):1053–1081

    Article  Google Scholar 

  10. Conte D, Foggia P, Sansone C, Vento M (2004) Thirty years of graph matching in pattern recognition. Int J Pattern Recogn Artif Intell 18(3):265–298

    Article  Google Scholar 

  11. Bunke H, Irniger C, Neuhaus M (2005) Graph matching – challenges and potential solutions. In: International conference on image analysis and processing, Springer-Verlag Berlin, Heidelberg, pp 1–10

    Google Scholar 

  12. Shokoufandeh A, Macrini D, Dickinson S, Siddiqi K, Zucker S (2005) Indexing hierarchical structures using graph spectra. IEEE Trans Pattern Anal Mach Intell 27(7):1125–1140

    Article  Google Scholar 

  13. Ferrer M, Valveny E, Serratosa F, Riesen K, Bunke H (2010) Generalized median graph computation by means of graph embedding in vector spaces. Pattern Recogn 43:1642–1655

    Article  MATH  Google Scholar 

  14. Bunke H, Gunter S, Jiang X (2001) Towards bridging the gap between statistical and structural pattern recognition: Two new concepts in graph matching. In: International conference on advances in pattern recognition. Springer, Berlin, pp 1–11

    Google Scholar 

  15. Roth V, Laub J, Kawanabe M, Buhmann J (2003) Optimal cluster preserving embedding of nonmetric proximity data. IEEE Trans Pattern Anal Mach Intell 25(12):1540–1551

    Article  Google Scholar 

  16. Chen T, Yang Q, Tang X (2007) Directed graph embedding. In: International joint conference on artificial intelligence, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, pp 2707–2712

    Google Scholar 

  17. Shaw B, Jebara T (2009) Structure preserving embedding. In: International conference on machine learning, ACM New York, NY, USA, pp 1–8

    Google Scholar 

  18. Foggia P, Vento M (2010) Graph Embedding for Pattern Recognition. In Ünay D, Çataltepe Z, Aksoy S (eds) Recognizing patterns in signals, speech, images and videos. Lecture notes in computer science, vol 6388. Springer, Berlin, pp 75–82

    Google Scholar 

  19. Lee G, Madabhushi A (2010) Semi-supervised graph embedding scheme with active learning (SSGEAL): Classifying high dimensional biomedical data. In: Pattern recognition in bioinformatics. Lecture notes in computer science, vol 6282. Springer, Berlin, pp 207–218

    Google Scholar 

  20. Riesen K, Bunke H (2010) Graph classification and clustering based on vector space embedding. World Scientic, Singapore

    MATH  Google Scholar 

  21. Riesen K, Bunke H (2010) Graph classification and clustering based on vector space embedding. World Scientific, Singapore

    MATH  Google Scholar 

  22. Wilson RC, Hancock ER, Luo B (2005) Pattern vectors from algebraic graph theory. IEEE Trans Pattern Anal Mach Intell 27:1112–1124

    Article  Google Scholar 

  23. Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69(17)

    Google Scholar 

  24. Papadopoulos Y, et Manolopoulos AN (1999) Structure-based similarity search with graph histograms. In: International workshop on database and expert systems applications. IEEE Computer Society Press

    Google Scholar 

  25. Lopresti D, Wilfong G (2003) A fast technique for comparing graph representations with applications to performance evaluation, International Journal on Document Analysis and Recognition, 6: 219–229,

    Article  Google Scholar 

  26. Gibert J, Valveny E, Bunke H (2011) Vocabulary selection for graph of words embedding. In: 5th Iberian conference on pattern recognition and image analysis. LNCS, 6669 ed. Springer, Berlin, pp 216–223

    Google Scholar 

  27. Gibert J, Valveny E, Bunke H (2011) Dimensionality reduction for graph of words embedding. In: LNCS 6658, Springer, pp 22–31

    Google Scholar 

  28. Kramer S, Raedt L (2001) Feature construction with version spaces for biochemical application. In: 18th international conference on machine learning, Morgan Kaufmann Publishers Inc. pp 258–265

    Google Scholar 

  29. Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for mining frequent substructures from graph data. Lect Notes Comput Sci 1910:13–23

    Article  Google Scholar 

  30. Sidère N, Héroux P, Ramel J-Y (2009) Vector representation of graphs: application to the classification of symbols and letters. In: International conference on document analysis and recognition, IEEE Computer Society Press pp 681–685

    Google Scholar 

  31. Chung FRK (1997) Spectral graph theory. American Mathematical Society, Providence

    MATH  Google Scholar 

  32. Harchaoui Z (2007) Image classification with segmentation graph kernels. In: IEEE conference on computer vision and pattern recognition. IEEE Computer Society Press

    Google Scholar 

  33. Luo B, Wilson R, Hancock E (2003) Spectral embedding of graphs. Pattern Recogn 36:2213–2230

    Article  MATH  Google Scholar 

  34. Robles-Kelly A, Hancock E (2007) A Riemannian approach to graph embedding. Pattern Recogn 40:1042–1056

    Article  MATH  Google Scholar 

  35. Kosinov S, Caelli T (2002) Inexact multisubgraph matching using graph eigenspace and clustering models. In: SSPR/SPR, Springer, pp 133–142

    Google Scholar 

  36. Pekalska E, Duin RPW (2005) The dissimilarity representation for pattern recognition: Foundations and applications. World Scientific Publishing, Singapore

    MATH  Google Scholar 

  37. Riesen K, Neuhaus M, Bunke H (2007) Graph embedding in vector spaces by means of prototype selection. In: International conference on graph-based representations in pattern recognition. Springer, Berlin, pp 383–393

    Google Scholar 

  38. Ferrer M, Valveny E, Serratosa F, Riesen K, Bunke H (2008) An approximate algorithm for median graph computation using graph embedding. In: International conference on pattern recognition. IEEE, New York, pp 1–4

    Google Scholar 

  39. Riesen K, Bunke H (2010) IAM graph database repository for graph based pattern recognition and machine learning. In: Structural, syntactic, and statistical pattern recognition. Springer, Berlin, pp 287–297

    Google Scholar 

  40. Bunke H, Riesen K (2011) Improving vector space embedding of graphs through feature selection algorithms. Pattern Recogn 44:1928–1940

    Article  Google Scholar 

  41. Luqman MM, Lladós J, Ramel J-Y, Brouard T (2010) A fuzzy-interval based approach for explicit graph embedding. In: Recognizing patterns in signals, speech, images and videos, vol 6388, Springer, pp 93–98

    Google Scholar 

  42. Luqman MM, Lladós J, Ramel J-Y, Brouard T (2011) Dimensionality reduction for fuzzy-interval based explicit graph embedding. In: GREC, pp 117–120

    Google Scholar 

  43. Luqman MM, Ramel J-Y, Lladós J, Brouard T (2013) Fuzzy multilevel graph embedding. Pattern recogn. 46(2)551–565. ISSN 0031-3203, 10.1016/j.patcog.2012.07.029

  44. Liu H, Hussain F, Tan C, Dash M (2002) “Discretization: An enabling technique. Data mining and knowledge, Springer, pp 393–423

    Google Scholar 

  45. Colot O, Courtellemont P, El-Matouat A (1994) Information criteria and abrupt changes in probability laws. In: Signal processing VII: theories and applications, pp 1855–1858

    Google Scholar 

  46. Ishibuchi H, Yamamoto T (2003) Deriving fuzzy discretization from interval discretization. In: International conference on fuzzy systems. IEEE, New York, pp 749–754

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Muzzamil Luqman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luqman, M.M., Ramel, JY., Lladós, J. (2013). Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces. In: Fu, Y., Ma, Y. (eds) Graph Embedding for Pattern Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4457-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4457-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4456-5

  • Online ISBN: 978-1-4614-4457-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics