Skip to main content

A Predictive Model for Human Activity Recognition by Observing Actions and Context

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9386))

  • 2838 Accesses

Abstract

This paper presents a novel model to estimate human activities — a human activity is defined by a set of human actions. The proposed approach is based on the usage of Recurrent Neural Networks (RNN) and Bayesian inference through the continuous monitoring of human actions and its surrounding environment. In the current work human activities are inferred considering not only visual analysis but also additional resources; external sources of information, such as context information, are incorporated to contribute to the activity estimation. The novelty of the proposed approach lies in the way the information is encoded, so that it can be later associated according to a predefined semantic structure. Hence, a pattern representing a given activity can be defined by a set of actions, plus contextual information or other kind of information that could be relevant to describe the activity. Experimental results with real data are provided showing the validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, M., Sawchuk, A.A.: Manifold learning and recognition of human activity using body-area sensors. In: International Conference on Machine Learning and Applications (ICMLA), vol. 2, pp. 7–13 (2011)

    Google Scholar 

  2. Yun, S., Yoo, C.: Loss-scaled large-margin gaussian mixture models for speech emotion classification. IEEE Transactions on Audio, Speech, and Language Processing 20, 585–598 (2012)

    Article  Google Scholar 

  3. Tariq, U., Lin, K.H., Li, Z., Zhou, X., Wang, Z., Le, V., Huang, T., Lv, X., Han, T.: Recognizing emotions from an ensemble of features. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42, 1017–1026 (2012)

    Article  Google Scholar 

  4. Mariooryad, S., Busso, C.: Exploring cross-modality affective reactions for audiovisual emotion recognition. IEEE Transactions on Affective Computing 4, 183–196 (2013)

    Article  Google Scholar 

  5. Moeslund, T.B., Hilton, A., Kruger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104, 90–126 (2006)

    Article  Google Scholar 

  6. Saygin, A.P., Cicekli, I., Akman, V.: Turing test: 50 years later. Minds and Machines 10, 12–20 (2000)

    Google Scholar 

  7. López, D.R., Neto, A.F., Bastos, T.F.: Reconocimiento en-línea de acciones humanas basado en patrones de rwe aplicado en ventanas dinámicas de momentos invariantes. Revista Iberoamericana de Automática e Informática Industrial RIAI 11, 202–211 (2014)

    Article  Google Scholar 

  8. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  9. Trappenberg, T.: Fundamentals of computational neuroscience. Oxford University Press (2010)

    Google Scholar 

  10. Mandic, D.P., Chambers, J.: Recurrent neural networks for prediction: Learning algorithms, architectures and stability. John Wiley & Sons, Inc. (2001)

    Google Scholar 

  11. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number generator. In: Symposium on Security and Privacy, pp. 371–385. IEEE (2006)

    Google Scholar 

  12. Vadhan, S.P.: Pseudorandomness, vol. 7 (2012)

    Google Scholar 

  13. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. Proceedings of the National Academy of Sciences 104, 8685–8690 (2007)

    Article  Google Scholar 

  14. Nikolić, D., Mureşan, R.C., Feng, W., Singer, W.: Scaled correlation analysis: a better way to compute a cross-correlogram. European Journal of Neuroscience 35, 742–762 (2012)

    Article  Google Scholar 

  15. Wu, Y., Hu, J., Wu, W., Zhou, Y., Du, K.L.: Storage capacity of the Hopfield network associative memory. In: International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 330–336 (2012)

    Google Scholar 

  16. Valiant, L.G.: Projection learning. Machine Learning 37, 115–130 (1999)

    Article  MATH  Google Scholar 

  17. MacKay, D.J.: Information theory, inference and learning algorithms. Cambridge University Press (2003)

    Google Scholar 

  18. McEliece, R., Posner, E.C., Rodemich, E.R., Venkatesh, S.: The capacity of the Hopfield associative memory. IEEE Transactions on Information Theory 33, 461–482 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2929–2936. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis G. Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Romero, D.G., Frizera, A., Sappa, A.D., Vintimilla, B.X., Bastos, T.F. (2015). A Predictive Model for Human Activity Recognition by Observing Actions and Context. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25903-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25902-4

  • Online ISBN: 978-3-319-25903-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics