Skip to main content

Action Recognition by Pairwise Proximity Function Support Vector Machines with Dynamic Time Warping Kernels

  • Conference paper
  • First Online:
Advances in Artificial Intelligence (Canadian AI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9673))

Included in the following conference series:

  • 1727 Accesses

Abstract

In the context of human action recognition using skeleton data, the 3D trajectories of joint points may be considered as multi-dimensional time series. The traditional recognition technique in the literature is based on time series dis(similarity) measures (such as Dynamic Time Warping). For these general dis(similarity) measures, k-nearest neighbor algorithms are a natural choice. However, k-NN classifiers are known to be sensitive to noise and outliers. In this paper, a new class of Support Vector Machine that is applicable to trajectory classification, such as action recognition, is developed by incorporating an efficient time-series distances measure into the kernel function. More specifically, the derivative of Dynamic Time Warping (DTW) distance measure is employed as the SVM kernel. In addition, the pairwise proximity learning strategy is utilized in order to make use of non-positive semi-definite (PSD) kernels in the SVM formulation. The recognition results of the proposed technique on two action recognition datasets demonstrates the ourperformance of our methodology compared to the state-of-the-art methods. Remarkably, we obtained 89 % accuracy on the well-known MSRAction3D dataset using only 3D trajectories of body joints obtained by Kinect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our formulation, the input samples, \(x_i\), are not restricted to be a subset of \(R^n\) and can be any set, e.g. set of images or videos.

References

  1. Bagheri, M.A., Hu, G., Gao, Q., Escalera, S.: A framework of multi-classifier fusion for human action recognition. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 1260–1265. IEEE (2014)

    Google Scholar 

  2. Chen, C., Jafari, R., Kehtarnavaz, N.: Action recognition from depth sequences using depth motion maps-based local binary patterns. In: WACV, pp. 1092–1099 (2015)

    Google Scholar 

  3. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: IEEE Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72. IEEE (2005)

    Google Scholar 

  4. Escalera, S., Gonzlez, J., Bar X., Reyes, M., Lopes, O., Guyon, I., Athistos, V., Escalante, H.: Multi-modal gesture recognition challenge 2013: dataset and results. In: ICMI (2013)

    Google Scholar 

  5. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. In: Advances in Neural Information Processing Systems, pp. 438–444 (1999)

    Google Scholar 

  6. Hernndez-Vela, A., Bautista, M.A., Perez-Sala, X., Ponce, V., Bar X., Pujol, O., Angulo, C., Escalera, S.: BoVDW: bag-of-visual-and-depth-words for gesture recognition. In: ICPR, pp. 449–452. IEEE (2012)

    Google Scholar 

  7. Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophy. 14(2), 201–211 (1973)

    Article  Google Scholar 

  8. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. SIAM (2001)

    Google Scholar 

  9. Laptev, I.: On space-time interest points. IJCV 64(2–3), 107–123 (2005)

    Article  Google Scholar 

  10. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  11. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: CVPR Workshop (CVPRW), pp. 9–14. IEEE (2010)

    Google Scholar 

  12. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3337–3344. IEEE (2011)

    Google Scholar 

  13. Mangasarian, O.L.: Generalized support vector machines. In: Advances in Neural Information Processing Systems, pp. 135–146 (1999)

    Google Scholar 

  14. Nie, S., Ji, Q.: Capturing global and local dynamics for human action recognition. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 1946–1951. IEEE (2014)

    Google Scholar 

  15. Oreifej, O., Liu, Z., Redmond, W.: HON4D:: histogram of oriented 4D normals for activity recognition from depth sequences. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  16. Reyes, M., Dominguez, G., Escalera, S.: Feature weighting in dynamic timewarping for gesture recognition in depth data. In: CVPR Workshops (CVPRW), pp. 1182–1188. IEEE (2011)

    Google Scholar 

  17. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  18. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  19. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)

    Google Scholar 

  20. Sung, J., Ponce, C., Selman, B., Saxena, A.: Unstructured human activity detection from RGBD images. In: ICRA, pp. 842–849. IEEE (2012)

    Google Scholar 

  21. Treisman, A., Schmidt, H.: Illusory conjunctions in the perception of objects. Cogn. Psychol. 14(1), 107–141 (1982)

    Article  Google Scholar 

  22. Vieira, A.W., Nascimento, E.R., Oliveira, G.L., Liu, Z., Campos, M.F.M.: STOP: space-time occupancy patterns for 3D action recognition from depth map sequences. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 252–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3169–3176. IEEE (2011)

    Google Scholar 

  24. Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3D action recognition with random occupancy patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 872–885. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297. IEEE (2012)

    Google Scholar 

  26. Wang, J., Liu, Z., Wu, Y., Yuan, J.: Learning actionlet ensemble for 3D human action recognition. PAMI 36(5), 914–927 (2014)

    Article  Google Scholar 

  27. Xia, L., Chen, C.C., Aggarwal, J.: View invariant human action recognition using histograms of 3D joints. In: CVPR Workshops (CVPRW), pp. 20–27. IEEE (2012)

    Google Scholar 

  28. Yang, X., Tian, Y.: Eigenjoints-based action recognition using naive-bayes-nearest-neighbor. In: CVPR Workshops (CVPRW), pp. 14–19. IEEE (2012)

    Google Scholar 

  29. Yang, X., Tian, Y.L.: Action recognition using super sparse coding vector with spatio-temporal awareness. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 727–741. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Bagheri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bagheri, M.A., Gao, Q., Escalera, S. (2016). Action Recognition by Pairwise Proximity Function Support Vector Machines with Dynamic Time Warping Kernels. In: Khoury, R., Drummond, C. (eds) Advances in Artificial Intelligence. Canadian AI 2016. Lecture Notes in Computer Science(), vol 9673. Springer, Cham. https://doi.org/10.1007/978-3-319-34111-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34111-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34110-1

  • Online ISBN: 978-3-319-34111-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics