Skip to main content

Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges (STACOM 2014)

Abstract

Changes in cardiac deformation patterns are correlated with cardiac pathologies. Deformation can be extracted from tagging Magnetic Resonance Imaging (tMRI) using Optical Flow (OF) techniques. For applications of OF in a clinical setting it is important to assess to what extent the performance of a particular OF method is stable across different clinical acquisition artifacts. This paper presents a statistical validation framework, based on ANOVA, to assess the motion and appearance factors that have the largest influence on OF accuracy drop. In order to validate this framework, we created a database of simulated tMRI data including the most common artifacts of MRI and test three different OF methods, including HARP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zerhouni, E., Parish, D., Rogers, W., et al.: Human heart: Tagging with MR imaging-a method for noninvasive assessment of myocardial motion. Radiology 169(1), 59–63 (1988)

    Article  Google Scholar 

  2. Axel, L., Dougherty, L.: MR imaging of motion with spatial modulation of magnetization. Radiology 171(3), 841–845 (1989)

    Article  Google Scholar 

  3. Mirsky, I., Pfeffer, J., Pfeffer, M., Braunwald, E.: The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat 53, 767–778 (1983)

    Google Scholar 

  4. Götte, M., van Rossum, A., Twisk, J., et al.: Quantification of regional contractile function after infarction: Strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. JACC 37, 808–817 (2001)

    Article  Google Scholar 

  5. Delhaas, T., Kotte, J., van der Toorn, A., et al.: Increase in left ventricular torsion-to-shortening ratio in children with valvular aorta stenosis 51, 135–139 (2004)

    Google Scholar 

  6. Horn, B., Schunck, B.: Determining optical flow. AI 17, 185–203 (1981)

    Google Scholar 

  7. Osman, N., Kerwin, W., McVeigh, E., Prince, J.: Cardiac motion tracking using CINE HARP magnetic resonance imaging 42(6), 1048–1060 (1999)

    Google Scholar 

  8. Prince, J., McVeigh, E.: Motion estimation from tagged MR image sequences 11(2), 238–249 (1992)

    Google Scholar 

  9. Florack, L., van Assen, H.: A new methodology for multiscale myocardial deformation and strain analysis based on tagging MRI (2010)

    Google Scholar 

  10. Xavier, M., Lalande, A., Walker, P., et al.: An adapted optical flow algorithm for robust quantification of cardiac wall motion from standard cine-MR examinations. Inf. Tech. in Biomed. 16(5), 859–868 (2012)

    Article  Google Scholar 

  11. Garcia-Barnes, J., Gil, D., Pujades, S., Carreras, F.: Variational framework for assessment of the left ventricle motion. Math. Mod. of Nat. Phen. 3(6), 76–100 (2008)

    Article  Google Scholar 

  12. Becciu, A., van Assen, H., Florack, L., et al.: A multi-scale feature based optic flow method for 3D cardiac motion estimation. In: SSVM, pp. 588–599 (2009)

    Google Scholar 

  13. Gupta, S., Prince, J.: On variable brightness optical flow for tagged MRI, pp. 323–334 (1995)

    Google Scholar 

  14. Carranza-Herrezuelo, N., Bajo, A., Sroubek, F., et al.: Motion estimation of tagged cardiac magnetic resonance images using variational techniques. Comp. Med. Im. and Graph. 34(6), 514–522 (2010)

    Article  Google Scholar 

  15. Alessandrini, M., Basarab, A., Liebgott, H., Bernard, O.: Myocardial motion estimation from medical images using the monogenic signal. IEEE Transactions on Image Processing 22(3), 1084–1095 (2013)

    Article  MathSciNet  Google Scholar 

  16. Arts, T., Prinzen, F., Delhaas, T., et al.: Mapping displacement and deformation of the heart with local sine-wave modeling 29(5) (2010)

    Google Scholar 

  17. Smal, I., Carranza-Herrezuelo, N., Klein, S., et al.: Reversible jump MCMC methods for fully automatic motion analysis in tagged MRI. Medical Image Analysis 16(1), 301–324 (2012)

    Article  Google Scholar 

  18. Arnold, S.: The theory of linear models and multivariate observations. Wiley (1997)

    Google Scholar 

  19. Jap, B., Lal, S., Fischer, P., Bekiaris, E.: Using eeg spectral components to assess algorithms for detecting fatigue. Expert Systems with Applications 36(2), 2352–2359 (2009)

    Article  Google Scholar 

  20. Arts, T., Hunter, W., Douglas, A., et al.: Description of the deformation of the left ventricle by a kinematic model. Journal Biomechanics 25(10), 1119–1127 (1992)

    Article  Google Scholar 

  21. Tukey, L.: Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949)

    Article  MathSciNet  Google Scholar 

  22. Waks, E., Prince, J., Douglas, A.: Cardiac motion simulator for tagged MRI. In: MMBIA-Workshops, pp. 182–191 (1996)

    Google Scholar 

  23. Gutberlet, M., Schwinge, K., Freyhardt, P., et al.: Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2D CINE magnetic resonance imaging. Eur. Radiol. 15(8), 1586–1597 (2005)

    Article  Google Scholar 

  24. Baker, S., Scharstein, D., Lewis, J., et al.: A database and evaluation methodology for optical flow. IJCV 92(1), 1–31 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Márquez-Valle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Márquez-Valle, P. et al. (2015). Factors Affecting Optical Flow Performance in Tagging Magnetic Resonance Imaging. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds) Statistical Atlases and Computational Models of the Heart - Imaging and Modelling Challenges. STACOM 2014. Lecture Notes in Computer Science(), vol 8896. Springer, Cham. https://doi.org/10.1007/978-3-319-14678-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14678-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14677-5

  • Online ISBN: 978-3-319-14678-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics