Skip to main content

Opt-SSL: An Enhanced Self-Supervised Framework for Food Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2022)

Abstract

Self-supervised Learning has been showing upbeat performance in several computer vision tasks. The popular contrastive methods make use of a Siamese architecture with different loss functions. In this work, we go deeper into two very recent state of the art frameworks, namely, SimSiam and Barlow Twins. Inspired by them, we propose a new self-supervised learning method we call Opt-SSL that combines both image and feature contrasting. We validate the proposed method on the food recognition task, showing that our proposed framework enables the self-learning networks to learn better visual representations.

P. Radeva—IAPR Fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. arXiv preprint arXiv:1906.00910 (2019)

  2. Barlow, H.B., et al.: Possible principles underlying the transformation of sensory messages. Sensory Commun. 1(01), 1–18 (1961)

    Google Scholar 

  3. Becker, S., Hinton, G.E.: Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature 355(6356), 161–163 (1992)

    Article  Google Scholar 

  4. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  5. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: ECCV, pp. 132–149 (2018)

    Google Scholar 

  6. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882 (2020)

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  9. Cubuk, E., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR Workshops, pp. 702–703 (2020)

    Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE CVPR, pp. 248–255 (2009)

    Google Scholar 

  11. El Khoury, C.F., Karavetian, M., Halfens, R.J., Crutzen, R., Khoja, L., Schols, J.M.: The effects of dietary mobile apps on nutritional outcomes in adults with chronic diseases: a systematic review and meta-analysis. J. Acad. Nutr. Diet. 119(4), 626–651 (2019)

    Article  Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS, vol. 27 (2014)

    Google Scholar 

  13. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)

  14. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: 13th ICAIS, pp. 297–304. JMLR Workshop (2010)

    Google Scholar 

  15. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  17. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. PAMI 43, 4037–4058 (2020)

    Article  Google Scholar 

  18. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1\(\times \) 1 convolutions. In: 32nd NIPS, pp. 10236–10245 (2018)

    Google Scholar 

  19. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1920–1929 (2019)

    Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  21. Liao, Y.H., Kar, A., Fidler, S.: Towards good practices for efficiently annotating large-scale image classification datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4350–4359 (2021)

    Google Scholar 

  22. Liu, C., Liang, Y., Xue, Y., Qian, X., Fu, J.: Food and ingredient joint learning for fine-grained recognition. IEEE Trans. Circ. Syst. Video Technol. 31, 2480–2493 (2020)

    Article  Google Scholar 

  23. Liu, X., et al.: Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  24. Liu, X., Deng, Z., Yang, Y.: Recent progress in semantic image segmentation. Artif. Intell. Rev. 52(2), 1089–1106 (2018). https://doi.org/10.1007/s10462-018-9641-3

    Article  Google Scholar 

  25. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  26. Martinel, N., Foresti, G.L., Micheloni, C.: Wide-slice residual networks for food recognition. In: 2018 WACV, pp. 567–576. IEEE (2018)

    Google Scholar 

  27. Meng, L., et al.: Learning using privileged information for food recognition. In: 27th ACM ICMM, pp. 557–565 (2019)

    Google Scholar 

  28. Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with vq-vae-2. In: NIPS, pp. 14866–14876 (2019)

    Google Scholar 

  29. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  30. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for good views for contrastive learning? arXiv preprint arXiv:2005.10243 (2020)

  31. Wiskott, L., Sejnowski, T.J.: Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14(4), 715–770 (2002)

    Article  Google Scholar 

  32. Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance-level discrimination. arXiv preprint arXiv:1805.01978 (2018)

  33. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. arXiv preprint arXiv:2103.03230 (2021)

  34. Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of visual embeddings. In: IEEE CVPR, pp. 6002–6012 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded from the European Union’s Horizon 2020 Research and Innovation programme under Open Call budget of the grant agreement No. 857159 (SHAPES), TIN2018-095232-B-C21, SGR-2017 1742 and CERCA Programme/Generalitat de Catalunya. B. Nagarajan acknowledges the support of FPI Becas, MICINN, Spain. We acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPUs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nil Ballús .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ballús, N., Nagarajan, B., Radeva, P. (2022). Opt-SSL: An Enhanced Self-Supervised Framework for Food Recognition. In: Pinho, A.J., Georgieva, P., Teixeira, L.F., Sánchez, J.A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2022. Lecture Notes in Computer Science, vol 13256. Springer, Cham. https://doi.org/10.1007/978-3-031-04881-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-04881-4_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-04880-7

  • Online ISBN: 978-3-031-04881-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics