Skip to main content

Space Variant Representations for Mobile Platform Vision Applications

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6855))

Included in the following conference series:

Abstract

The log-polar space variant representation, motivated by biological vision, has been widely studied in the literature. Its data reduction and invariance properties made it useful in many vision applications. However, due to its nature, it fails in preserving features in the periphery. In the current work, as an attempt to overcome this problem, we propose a novel space-variant representation. It is evaluated and proved to be better than the log-polar representation in preserving the peripheral information, crucial for on-board mobile vision applications. The evaluation is performed by comparing log-polar and the proposed representation once they are used for estimating dense optical flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bolduc, M., Levine, M.D.: A review of biologically motivated space-variant data reduction models for robotic vision. Computer Vision and Image Understanding 69(2), 170–184 (1998)

    Article  Google Scholar 

  2. Schwartz, E.L., Greve, D.N., Bonmassar, G.: Space-variant active vision: Definition, overview and examples. Neural Networks 8(7-8), 1297–1308 (1995)

    Article  Google Scholar 

  3. Traver, V.J., Pla, F.: The log-polar image representation in pattern recognition tasks. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 1032–1040. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Daniilidis, K.: Computation of 3-d-motion parameters using the log-polar transform. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 82–89. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  5. Tistarelli, M., Sandini, G.: On the advantages of polar and log-polar mapping for direct estimation of time-to-impact from optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 15(4), 401–410 (1993)

    Article  Google Scholar 

  6. Traver, V.J., Bernardino, A.: A review of log-polar imaging for visual perception in robotics. Robotics and Autonomous Systems 58(4), 378–398 (2010)

    Article  Google Scholar 

  7. Traver, V.J., Pla, F.: Motion analysis with the radon transform on log-polar images. Journal of Mathematical Imaging and Vision 30(2), 147–165 (2008)

    Article  Google Scholar 

  8. Yeasin, M.: Optical flow in log-mapped image plane-a new approach. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 125–131 (2002)

    Article  Google Scholar 

  9. Daniilidis, K., Krüger, V.: Optical flow computation in the log-polar-plane. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 65–72. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Horn, B.K.P., Schunk, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  11. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L 1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their principles. In: CVPR, pp. 2432–2439 (2010)

    Google Scholar 

  13. Onkarappa, N., Sappa, A.D.: On-board monocular vision system pose estimation through a dense optical flow. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 230–239. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  15. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  16. Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In: Proc. Image and Vision Computing, Christchurch, New Zealand, pp. 1–6 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Onkarappa, N., Sappa, A.D. (2011). Space Variant Representations for Mobile Platform Vision Applications. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds) Computer Analysis of Images and Patterns. CAIP 2011. Lecture Notes in Computer Science, vol 6855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23678-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23678-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23677-8

  • Online ISBN: 978-3-642-23678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics