Skip to main content

The RPM3D Project: 3D Kinematics for Remote Patient Monitoring

  • Conference paper
  • First Online:
Intertwining Graphonomics with Human Movements (IGS 2022)

Abstract

This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute (https://www.guttmann.com/en/) (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.

Supported by the ATTRACT project funded by the EC under Grant Agreement 777222.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Burden of Stroke in Europe: http://www.strokeeurope.eu/.

  2. 2.

    http://dag.cvc.uab.es/patientmonitoring/.

References

  1. Coupland, A.P., Thapar, A., Qureshi, M.I., Jenkins, H., Davies, A.H.: The definition of stroke. J. Roy. Soc. Med. 110(1), 9–12 (2017)

    Article  Google Scholar 

  2. Majersik, J., Woo, D.: The enormous financial impact of stroke disability. Neurology 94(9), 377–378 (2020). 2 cites

    Article  Google Scholar 

  3. Rajsic, S., et al.: Economic burden of stroke: a systematic review on post-stroke care. Eur. J. Health Econ. 20(1), 107–134 (2018). https://doi.org/10.1007/s10198-018-0984-0

    Article  Google Scholar 

  4. Bartoli, F., Di Brita, C., Crocamo, C., Clerici, M., Carrà, G.: Early post-stroke depression and mortality: meta-analysis and meta-regression. Front. Psychiatry 9, 530 (2018)

    Article  Google Scholar 

  5. Hussein, A., Idris, I., Abbasher, M., Abbashar, H., Mohamed Ahmed Abbasher, K.: Post stroke depression. J. Neurol. Sci. 405, 70 (2019). Abstracts from the World Congress of Neurology (WCN 2019)

    Google Scholar 

  6. Plamondon, R.: A kinematic theory of rapid human movements: part I. Movement representation and generation. Biol. Cybern. 72(4), 295–307 (1995). https://doi.org/10.1007/BF00202785

    Article  MATH  Google Scholar 

  7. Plamondon, R.: A kinematic theory of rapid human movements: part II. Movement time and control. Biol. Cybern. 72(4), 309–320 (1995). https://doi.org/10.1007/BF00202786

    Article  MATH  Google Scholar 

  8. Plamondon, R.: A kinematic theory of rapid human movements: part III. Kinetic outcomes. Biol. Cybern. 78(2), 133–145 (1998). https://doi.org/10.1007/s004220050420

    Article  MATH  Google Scholar 

  9. O’Reilly, C., Plamondon, R., Lebrun, L.-H.: Linking brain stroke risk factors to human movement features for the development of preventive tools. Front. Aging Neurosci. 6, 150 (2014)

    Google Scholar 

  10. Fornés, A., et al.: Exploring the 3D kinematics for brain stroke rehabilitation. In: Plamondon, R., Marcelli, A., Ferrer, M.Á. (eds.) The Lognormality Principle and Its Applications in e-Security, e-Learning and e-Health, pp. 349–352. World Scientific Publishing (2020)

    Google Scholar 

  11. Mahbub, U., Ahad, M.A.R.: Advances in human action, activity and gesture recognition. Pattern Recogn. Lett. 155, 186–190 (2022)

    Article  Google Scholar 

  12. Akila, K., Chitrakala, S.: An efficient method to resolve intraclass variability using highly refined hog description model for human action recognition. Concurr. Comput. Pract. Exp. 31(12), e4856 (2018)

    Google Scholar 

  13. Alharbi, F., Ouarbya, L., Ward, J.A.: Comparing sampling strategies for tackling imbalanced data in human activity recognition. Sensors 22(4), 1373–1373 (2022)

    Article  Google Scholar 

  14. Nan, Y., Lovell, N., Wang, K., Delbaere, K., van Schooten, K.: Deep learning for activity recognition in older people using a pocket-worn smartphone. Sensors 20, 7195 (2020)

    Article  Google Scholar 

  15. Semwal, V.B., Gupta, A., Lalwani, P.: An optimized hybrid deep learning model using ensemble learning approach for human walking activities recognition. J. Supercomput. 77(11), 12256–12279 (2021). https://doi.org/10.1007/s11227-021-03768-7. 10 cites

    Article  Google Scholar 

  16. Margarito, J., Helaoui, R., Bianchi, A.M., Sartor, F., Bonomi, A.G.: User-independent recognition of sports activities from a single wrist-worn accelerometer: a template-matching-based approach. IEEE Trans. Biomed. Eng. 63(4), 788–796 (2016)

    Google Scholar 

  17. Straczkiewicz, M., James, P., Onnela, J.: A systematic review of smartphone-based human activity recognition methods for health research. NPJ Digit. Med. 4(1), 1–15 (2021). 6 cites

    Article  Google Scholar 

  18. Hernández, N., Lundström, J., Favela, J., McChesney, I., Arnrich, B.: Literature review on transfer learning for human activity recognition using mobile and wearable devices with environmental technology. SN Comput. Sci. 1 (2020). https://doi.org/10.1007/s42979-020-0070-4. 21 cites

  19. Wu, L.-F., Wang, Q., Jian, M., Qiao, Yu., Zhao, B.-X.: A comprehensive review of group activity recognition in videos. Int. J. Autom. Comput. 18(3), 334–350 (2021). https://doi.org/10.1007/s11633-020-1258-8. 8 cites

    Article  Google Scholar 

  20. Chen, Z., Zhu, Q., Soh, Y.C., Zhang, L.: Robust human activity recognition using smartphone sensors via CT-PCA and online SVM. IEEE Trans. Ind. Inform. 13, 3070–3080 (2017)

    Article  Google Scholar 

  21. Chathuramali, K.G.M., Rodrigo, R.: Faster human activity recognition with SVM. In: International Conference on Advances in ICT for Emerging Regions (ICTer2012), pp. 197–203 (2012)

    Google Scholar 

  22. Liu, Z., Li, S., Hao, J., Jingfeng, H., Pan, M.: An efficient and fast model reduced kernel KNN for human activity recognition. J. Adv. Transp. 1–9, 2021 (2021)

    Google Scholar 

  23. Ferreira, P.J.S., Cardoso, J.M.P., Mendes-Moreira, J.: kNN prototyping schemes for embedded human activity recognition with online learning. Computers 9, 96 (2020)

    Article  Google Scholar 

  24. Plamondon, R., O’Reilly, C., Rémi, C., Duval, T.: The lognormal handwriter: learning, performing, and declining. Front. Psychol. 4, 945 (2013)

    Article  Google Scholar 

  25. Ferrer, M.A., Diaz, M., Carmona-Duarte, C., Plamondon, R.: iDeLog: iterative dual spatial and kinematic extraction of sigma-lognormal parameters. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 114–125 (2020)

    Article  Google Scholar 

  26. O’Reilly, C., Plamondon, R.: Development of a sigma-lognormal representation for on-line signatures. Pattern Recogn. 42(12), 3324–3337 (2009). New Frontiers in Handwriting Recognition

    Article  MATH  Google Scholar 

  27. Djioua, M., Plamondon, R.: A new algorithm and system for the extraction of delta-lognormal parameters (2008)

    Google Scholar 

  28. Fischer, A., Schindler, R., Bouillon, M., Plamondon, R.: Modeling 3D movements with the kinematic theory of rapid human movements, pp. 327–342 (2021)

    Google Scholar 

  29. Bensalah, A., Chen, J., Fornés, A., Carmona-Duarte, C., Lladós, J., Ferrer, M.Á.: Towards stroke patients’ upper-limb automatic motor assessment using smartwatches. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12661, pp. 476–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68763-2_36

    Chapter  Google Scholar 

Download references

Acknowledgement

This work has been partially supported by the Spanish project RTI2018-095645-B-C21, the CERCA Program/Generalitat de Catalunya and the FI fellowship AGAUR 2020 FI-SDUR 00497 (with the support of the Secretaria d’Universitats i Recerca of the Generalitat de Catalunya and the Fons Social Europeu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fornés, A. et al. (2022). The RPM3D Project: 3D Kinematics for Remote Patient Monitoring. In: Carmona-Duarte, C., Diaz, M., Ferrer, M.A., Morales, A. (eds) Intertwining Graphonomics with Human Movements. IGS 2022. Lecture Notes in Computer Science, vol 13424. Springer, Cham. https://doi.org/10.1007/978-3-031-19745-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19745-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19744-4

  • Online ISBN: 978-3-031-19745-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics