Skip to main content
Log in

Improvement of Cyclodextrin Glycosyltransferase Gene Expression in Escherichia coli by Insertion of Regulatory Sequences Involved in the Promotion of RNA Transcription

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Regulation of RNA transcription in controlling the expression of genes at promoter and terminator regions is crucial as the interaction of RNA polymerase occurred at both sites. Gene encoding cyclodextrin glycosyltransferase (CGTase) from Bacillus sp. NR5 UPM isolated in the previous study was used for further construction of pTZCGT-SS, pTZCGT-BS and pTZCGT-BT expression systems for enhancement of CGTase production. The putative promoter regions, −35 and −10 sequences were found in the upstream of the mature gene start codon. Whereas, long inverted repeats sequences which can form a stable stem and loop structure was found downstream of the open reading frame (ORF) of Bacillus sp. NR5 UPM CGTase. The construction of E. coli strain harbouring pTZCGT-BS showed increment of 3.2-fold in CGTase activity compared to the wild type producer. However, insertion of terminator downstream of CGTase gene in E. coli strain harbouring pTZCGT-BT only resulted in 4.42 % increment of CGTase production compared to E. coli strain containing pTZCGT-BS, perhaps due to low intrinsic termination efficiency. Thus, it is suggested that the insertion of the putative promoter regions upstream of the coding sequence for the construction of CGTase expression system will further enhance in the recombinant enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hirano, K., Ishihara, T., Ogasawara, S., Maeda, H., Abe, K., Nakajima, T., et al. (2006). Molecular cloning and characterization of a novel γ-CGTase from alkalophilic Bacillus sp. Applied Microbiology and Biotechnology, 70, 193–201.

    Article  CAS  Google Scholar 

  2. Uitdehaag, J. C. M., Mosi, R., Kalk, K. H., van der Veen, B. A., Dijkhuizan, L., Withers, S. G., et al. (1999). X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Natural Structural Biology, 6, 432–436.

    Article  CAS  Google Scholar 

  3. Biwer, A., Antranikian, G., & Heinzle, E. (2002). Enzymatic production of cyclodextrins. Applied Microbiology and Biotechnology, 59, 609–617.

    Article  CAS  Google Scholar 

  4. Sorensen, H. P., & Mortensen, K. K. (2005). Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 115, 113–128.

    Article  CAS  Google Scholar 

  5. Charoensakdi, R., Iizuka, M., Ito, K., Rimphanitchayakit, V., & Limpaseni, T. (2007). A recombinant cyclodextrin glycosyltransferase cloned from Paenibacillus sp. strain RB01 showed improved catalytic activity in coupling reaction between cyclodextrins and disaccharides. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57, 53–59.

    Article  CAS  Google Scholar 

  6. Charoensakdi, R., Murakami, S., Aoki, K., Rimphanitchayakit, V., & Limpaseni, T. (2007). Cloning and expression of cyclodextrin glycosyltransferase gene from Paenibacillus sp. T16 isolated from hot spring soil in Northern Thailand. Journal of Biochemistry and Molecular Biology, 40, 333–340.

    Article  CAS  Google Scholar 

  7. Choi, J. H., Keum, K. C., & Lee, S. Y. (2006). Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science, 61, 876–885.

    Article  CAS  Google Scholar 

  8. Ramli, N., Abd-Aziz, S., Hassan, M. A., Alitheen, N. B., & Kamaruddin, K. (2010). Potential cyclodextrin glycosyltransferase producer from locally isolated bacteria. African Journal of Biotechnology, 9, 7317–7321.

    CAS  Google Scholar 

  9. Sambrook, J., & Russel, D.W. (2001). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

  10. Ramli, N., Abd-Aziz, S., Hassan, M. A., Alitheen, N. B., Kamaruddin, K., & Ibrahim, Z. (2011). Molecular cloning and extracellular expression of cyclodextrin glycosyltransferase gene from Bacillus sp. NR5 UPM. African Journal of Microbiology, 5, 3475–3482.

    CAS  Google Scholar 

  11. Kaneko, T., Kato, T., Nakamura, N., & Horikoshi, K. (1987). Spectrophotometric determination of cyclization activity of β-cyclodextrin-forming cyclomaltodextrin glucanotransferase. Journal of the Japanese Society of Starch Science, 34, 45–48.

    Article  CAS  Google Scholar 

  12. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  13. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  14. Rahman, K., Illias, R. M., Hassan, O., Mahmood, N. A. N., & Rashid, N. A. A. (2006). Molecular cloning of a cyclodextrin glucanotransferase gene from alkalophilic Bacillus sp. TS1-1 and characterization of the recombinant enzyme. Enzyme and Microbial Technology, 39, 74–84.

    Article  CAS  Google Scholar 

  15. Makrides, S. C. (1996). Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews, 60, 512–538.

    CAS  Google Scholar 

  16. Ong, R. M., Goh, K. M., Mahadi, N. M., Hassan, O., Rahman, R. N. Z. R. A., & Illias, R. M. (2008). Cloning, extracellular expression and characterization of a predominant β-CGTase from Bacillus sp. G1 in E. coli. Journal of Industrial Microbiology and Biotechnology, 35, 1705–1714.

    Article  CAS  Google Scholar 

  17. Kitamoto, N., Kimura, T., Kito, Y., & Ohmiya, K. (1992). Cloning and sequencing of the gene encoding cyclodextrin glucanotransferase from Bacillus sp. KC201. Journal of Fermentation and Bioengineering, 74, 345–351.

    Article  CAS  Google Scholar 

  18. de Hoon, M. J. L., Makita, Y., Nakai, K., & Miyano, S. (2005). Prediction of transcriptional terminators in Bacillus subtilis and related species. PLoS Computational Biology, 1, 212–221.

    Google Scholar 

  19. Brockmeier, U., Wendorff, M., & Eggert, T. (2006). Versatile expression and secretion vectors for Bacillus subtilis. Current Microbiology, 52, 143–148.

    Article  CAS  Google Scholar 

  20. Yansura, D. G., & Henner, D. J. (1990). Use of Escherichia coli trp promoter for direct expression of proteins. Methods in Enzymology, 185, 54–60.

    Article  CAS  Google Scholar 

  21. Hansen, L. H., Knudsen, S., & Sorensen, S. J. (1998). The effect of the lacY gene on the induction of IPTG inducible promoters, studied in Escherichia coli and Pseudomonas fluorescens. Current Microbiology, 36, 341–347.

    Article  CAS  Google Scholar 

  22. Oguma, T., Matsuyama, A., Kikuchi, M., & Nakano, E. (1993). Cloning and sequence analysis of the cyclomaltodextrinase gene from Bacillus sphaericus and expression in Escherichia coli cells. Applied Microbiology and Biotechnology, 39, 197–203.

    Article  CAS  Google Scholar 

  23. Park, E., Shin, Y., Lim, Y., Kwon, T., Kim, D., & Yang, M. (2000). Expression of glucose oxidase by using recombinant yeast. Journal of Biotechnology, 81, 35–44.

    Article  CAS  Google Scholar 

  24. Chu, W. M., Liu, W. M., & Schmid, C. W. (1995). RNA polymerase III promoter and terminator elements affect AIu RNA expression. Nucleic Acids Research, 23, 1750–1757.

    Article  CAS  Google Scholar 

  25. Reynolds, R., Bermudez-Cruz, R. M., & Chamberlin, M. J. (1992). Parameters affecting transcription termination by Escherichia coli RNA polymerase: I. Analysis of 13 rho-independent terminators. Journal of Molecular Biology, 224, 31–51.

    Article  CAS  Google Scholar 

  26. Abelyan, V. A., Afyan, K. B., & Manukyan, L. S. (2000). New cyclomaltodextrin glucan transferases produced by Bacillus macerans. Applied Biochemistry and Microbiology, 36, 338–343.

    Article  Google Scholar 

  27. Tachibana, Y., Kuramura, A., Shirasaka, N., Suzuki, Y., Yamamoto, T., Fujiwara, S., et al. (1999). Purification and characterization of an extremely thermostable cyclomaltodextrin glucanotransferase from a newly isolated hyperthermophilic archaeon, a Thermococcus sp. Applied and Environmental Microbiology, 65, 1991–1997.

    CAS  Google Scholar 

  28. Tonkova, A. (1998). Bacterial cyclodextrin glucanotransferase. Enzyme and Microbial Technology, 22, 678–686.

    Article  CAS  Google Scholar 

  29. Lee, J. H., Choi, K. H., Choi, J. Y., Lee, Y. S., Kwon, I. B., & Yu, J. H. (1992). Enzymatic production of α-cyclodextrin with the cyclomaltodextrin glucanotransferase of Klebsiella oxytoca 19–1. Enzyme and Microbial Technology, 14, 1017–1022.

    Article  CAS  Google Scholar 

  30. Avci, A., & Donmez, S. (2009). A novel thermophilic anaerobic bacteria producing cyclodextrin glycosyltransferase. Process Biochemistry, 44, 36–42.

    Article  CAS  Google Scholar 

  31. Kaneko, T., Song, K., Hamamoto, T., Kudo, T., & Horikoshi, K. (1989). Construction of a chimeric series of Bacillus cyclomaltodextrin glucanotransferases and analysis of the thermal stabilities and pH optima of the enzymes. Journal of General Microbiology, 135, 3447–3457.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Ministry of Higher Education Malaysia (MOHE) under the Fundamental Research Grant Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhayati Ramli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramli, N., Abd-Aziz, S., Alitheen, N.B. et al. Improvement of Cyclodextrin Glycosyltransferase Gene Expression in Escherichia coli by Insertion of Regulatory Sequences Involved in the Promotion of RNA Transcription. Mol Biotechnol 54, 961–968 (2013). https://doi.org/10.1007/s12033-013-9647-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-013-9647-7

Keywords

Navigation