Skip to main content
Log in

Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects

  • Earth-affecting Solar Transients
  • Published:
Solar Physics Aims and scope Submit manuscript

A Correction to this article was published on 03 April 2019

This article has been updated

Abstract

Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l’Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km s−1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric–hectometric wavelengths is a very useful criterion for the CME–SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR caused two SSCs, and 4 shock events; note than one CIR caused two SSCs. The 11 MCs listed in 3 or more MC catalogs covering the year 2002 are associated with SSCs. For the three most intense geomagnetic storms (based on Dst minima) related to MCs, we note two sudden increases of the Dst, at the arrival of the sheath and the arrival of the MC itself. In terms of geoeffectiveness, the relation between the CME speed and the magnetic-storm intensity, as characterized using the Dst magnetic index, is very complex, but generally CMEs with velocities at the Sun larger than 1000 km s−1 have larger probabilities to trigger moderate or intense storms. The most geoeffective events are MCs, since 92% of them trigger moderate or intense storms, followed by ICMEs (33%). At best, CIRs/SIRs only cause weak storms. We show that these geoeffective events (ICMEs or MCs) trigger an increased and combined auroral kilometric radiation (AKR) and non-thermal continuum (NTC) wave activity in the magnetosphere, an enhanced convection in the ionosphere, and a stronger response in the thermosphere. However, this trend does not appear clearly in the coupling functions, which exhibit relatively weak correlations between the solar-wind energy input and the amplitude of various geomagnetic indices, whereas the role of the southward component of the solar-wind magnetic field is confirmed. Some saturation appears for Dst values \(< -100\) nT on the integrated values of the polar and auroral indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Change history

Notes

  1. Built by the Service of Rapid Magnetic Variations, Observatori de l’Ebre (Spain) in the framework of the International Service of Geomagnetic Indices (ISGI) activities.

  2. www.ias.u-psud.fr/gmi (login: gmi, password: cme). This database is a working tool for a multidisciplinary research group and as such the presentation and description of its elements, figures, and plots are not at a level suitable for publication. We initially used the catalog of CMEs (available at cdaw.gsfc.nasa.gov/CME_list/), which was established on the basis of Solar and Heliospheric Observatory (SOHO) observations to build our own list of halo CMEs, from April 1996 to January 2007.

  3. www.cluster.rl.ac.uk/csdsweb-cgi/csdsweb_pick.

  4. space.rish.kyoto-u.ac.jp/gtlpwi/gtldata.html.

  5. amda.cdpp.eu/.

References

  • Bain, H.M., Krucker, S., Saint-Hilaire, P., Raftery, C.L.: 2014, Radio imaging of a type IVM radio burst on the 14th of August 2010. Astrophys. J.782, 43. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bastian, T.S., Pick, M., Kerdraon, A., Maia, D., Vourlidas, A.: 2001, The coronal mass ejection of 1998 April 20: direct imaging at radio wavelengths. Astrophys. J. Lett.558, L65. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Muhr, N., Kienreich, I., Utz, D., Vršnak, B.: 2011, Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J.738, 191. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J.755, 44. DOI . ADS .

    Article  ADS  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: 2006, Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res.111, A07S08. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bothmer, V., Zhukov, A.: 2007, The Sun as the prime source of space weather. In: Bothmer, V., Daglis, I.A. (eds.) Space Weather – Physics and Effects, Springer, Berlin, 31. DOI . ADS .

    Chapter  Google Scholar 

  • Bougeret, J.-L., Kaiser, M.L., Kellogg, P.J., Manning, R., Goetz, K., Monson, S.J., Monge, N., Friel, L., Meetre, C.A., Perche, C., Sitruk, L., Hoang, S.: 1995, Waves: the radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev.71, 231. DOI . ADS .

    Article  ADS  Google Scholar 

  • Bowman, B.R., Tobiska, W.K., Marcos, F.A., Huang, C.Y., Lin, C.S., Burke, W.J.: 2008, A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics Specialist Conf., 6438.

    Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys.162, 357. DOI . ADS .

    Article  ADS  Google Scholar 

  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R.: 1981, Magnetic loop behind an interplanetary shock – Voyager, Helios, and IMP 8 observations. J. Geophys. Res.86, 6673. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996-2002. J. Geophys. Res.108, 1156. DOI . ADS .

    Article  Google Scholar 

  • Caroubalos, C.: 1964, Contribution à l’étude de l’activitél solaire en relation avec ses effects gélophysiques. Ann. Astrophys.27, 333. ADS .

    ADS  Google Scholar 

  • Case, N.A., Wild, J.A.: 2013, The location of the Earth’s magnetopause: a comparison of modeled position and in situ Cluster data. J. Geophys. Res.118, 6127. DOI . ADS .

    Article  Google Scholar 

  • Chiu, M.C., von-Mehlem, U.I., Willey, C.E., Betenbaugh, T.M., Maynard, J.J., Krein, J.A., Conde, R.F., Gray, W.T., Hunt, J.W. Jr., Mosher, L.E., McCullough, M.G., Panneton, P.E., Staiger, J.P., Rodberg, E.H.: 1998, ACE spacecraft. Space Sci. Rev.86, 257. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cho, K.-S., Bong, S.-C., Kim, Y.-H., Moon, Y.-J., Dryer, M., Shanmugaraju, A., Lee, J., Park, Y.D.: 2008, Low coronal observations of metric type II associated CMEs by MLSO coronameters. Astron. Astrophys.491, 873. DOI . ADS .

    Article  ADS  Google Scholar 

  • Cid, C., Cremades, H., Aran, A., Mandrini, C., Sanahuja, B., Schmieder, B., Menvielle, M., Rodriguez, L., Saiz, E., Cerrato, Y., Dasso, S., Jacobs, C., Lathuillere, C., Zhukov, A.: 2012, Can a halo CME from the limb be geoeffective? J. Geophys. Res.117, 11102. DOI . ADS .

    Article  Google Scholar 

  • Dauphin, C., Vilmer, N., Lüthi, T., Trottet, G., Krucker, S., Magun, A.: 2005, Modulations of broad-band radio continua and X-ray emissions in the large X-ray flare on 03 November 2003. Adv. Space Res.35, 1805. DOI . ADS .

    Article  ADS  Google Scholar 

  • Davis, T.N., Sugiura, M.: 1966, Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J. Geomagn. Geoelectr.71, 785.

    Google Scholar 

  • Décréau, P.M.E., Fergeau, P., Krannosels’kikh, V., Leveque, M., Martin, P., Randriamboarison, O., Sene, F.X., Trotignon, J.G., Canu, P., Mogensen, P.B.: 1997, Whisper, a resonance sounder and wave analyser: performances and perspectives for the Cluster mission. Space Sci. Rev.79, 157. DOI . ADS .

    Article  ADS  Google Scholar 

  • Décréau, P., Ducoin, C., Le Rouzic, G., Randriamboarison, O., Rauch, J., Trotignon, J., Vallières, X., Canu, P., Darrouzet, F., Gough, M., Buckley, A., Carozzi, T.: 2004, Observation of continuum radiations from the Cluster fleet: first results from direction finding. Ann. Geophys.22, 2607. DOI . ADS .

    Article  ADS  Google Scholar 

  • Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Solar Phys.162, 291. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Nakwacki, M.S., Dasso, S., Mandrini, C.H.: 2008, Expected in situ velocities from a hierarchical model for expanding interplanetary coronal mass ejections. Solar Phys.250, 347. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Vourlidas, A., Pick, M., Bouteille, A.: 2012a, Initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J.750, 147. DOI . ADS .

    Article  ADS  Google Scholar 

  • Démoulin, P., Vourlidas, A., Pick, M., Bouteille, A.: 2012b, Erratum: initiation and development of the white-light and radio coronal mass ejection on 2001 April 15. Astrophys. J.754, 156. DOI . ADS .

    Article  ADS  Google Scholar 

  • Echer, E., Tsurutani, B.T., Gonzalez, W.D.: 2013, Interplanetary origins of moderate (\(-100~\text{nT} < \mathrm{Dst} < -50~\text{nT}\)) geomagnetic storms during solar cycle 23 (1996 – 2008). J. Geophys. Res.118, 385. DOI . ADS .

    Article  Google Scholar 

  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C.: 2008, Interplanetary conditions causing intense geomagnetic storms (\(\mathrm{Dst} < -100~\text{nT}\)) during solar cycle 23 (1996 – 2006). J. Geophys. Res.113, A05221. DOI . ADS .

    Article  ADS  Google Scholar 

  • Escoubet, C.P., Fehringer, M., Goldstein, M.: 2001, Introduction the Cluster mission. Ann. Geophys.19, 1197. DOI . ADS .

    Article  ADS  Google Scholar 

  • Feng, S.W., Chen, Y., Kong, X.L, Li, G., Song, H.Q, Feng, X.S, Liu, Y.: 2012, Radio signatures of coronal-mass-ejection-streamer interaction and source diagnostics of type II radio burst. Astrophys. J.753, 21. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fleck, B., Domingo, V., Poland, A.I.: 1995, The SOHO mission. Solar Phys.162. ADS .

  • Forbes, J.M., Lu, G., Bruinsma, S., Nerem, S., Zhang, X.: 2005, Thermosphere density variations due to the 15 – 24 April 2002 solar events from champ/star accelerometer measurements. J. Geophys. Res.110. DOI .

  • Forsyth, R.J., Bothmer, V., Cid, C., Crooker, N.U., Horbury, T.S., Kecskemety, K., Klecker, B., Linker, J.A., Odstrcil, D., Reiner, M.J., Richardson, I.G., Rodriguez-Pacheco, J., Schmidt, J.M., Wimmer-Schweingruber, R.F.: 2006, ICMEs in the inner heliosphere: origin, evolution and propagation effects. Report of working group G. Space Sci. Rev.123, 383. DOI . ADS .

    Article  ADS  Google Scholar 

  • Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., Kasper, J.C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M.K., McComas, D.J., Raouafi, N.E., Szabo, A.: 2016, The solar probe plus mission: humanity’s first visit to our star. Space Sci. Rev.204, 7. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res.99, 5771. DOI .

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Echer, E., Clua-Gonzalez, A.L., Tsurutani, B.T.: 2007, Interplanetary origin of intense geomagnetic storms (\(\mathrm{Dst} < -100~\text{nT}\)) during solar cycle 23. Geophys. Res. Lett.34, 6101. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2001, Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophys. J. Lett.548, L91. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R.: 2009, The SOHO/LASCO CME catalog. Earth Moon Planets104, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Mäkelä, P., Vourlidas, A., Howard, R.A.: 2010a, A catalog of halo coronal mass ejections from SOHO. Sun Geosph.5, 7. ADS .

    ADS  Google Scholar 

  • Gopalswamy, N., Xie, H., Mäkelä, P., Akiyama, S., Yashiro, S., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2010b, Interplanetary shocks lacking type II radio bursts. Astrophys. J.710, 1111. DOI . ADS .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Mäkelä, P.: 2010c, Large geomagnetic storms associated with limb halo coronal mass ejections. Adv. Geosci. Solar Terr.21, 71. ADS .

    Google Scholar 

  • Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. AGU Monogr. Ser.58, Am. Geophys. Union, Washington, 343. ADS .

    Google Scholar 

  • Gough, M.P.: 1982, Non-thermal continuum emissions associated with electron injections – remote plasmapause sounding. Planet. Space Sci.30, 657. DOI . ADS .

    Article  ADS  Google Scholar 

  • Greenwald, R.A., Baker, K.B., Dudeney, J.R., Pinnock, M., Jones, T.B., Thomas, E.C., Villain, J.-P., Cerisier, J.-C., Senior, C., Hanuise, C., Hunsucker, R.D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker, A.D.M., Sato, N., Yamagishi, H.: 1995, Darn/superdarn: a global view of the dynamics of high-latitude convection. Space Sci. Rev.71, 761. DOI . ADS .

    Article  ADS  Google Scholar 

  • Grison, B., Sahraoui, F., Lavraud, B., Chust, T., Cornilleau-Wehrlin, N., Rème, H., Balogh, A., André, M.: 2005, Wave particle interactions in the high-altitude polar cusp: a Cluster case study. Ann. Geophys.23(12), 3699. DOI .

    Article  ADS  Google Scholar 

  • Hanuise, C., Cerisier, J.C., Auchère, F., Bocchialini, K., Bruinsma, S., Cornilleau-Wehrlin, N., Jakowski, N., Lathuillère, C., Menvielle, M., Valette, J.-J., Vilmer, N., Watermann, J., Yaya, P.: 2006, From the Sun to the Earth: impact of the 27 – 28 May 2003 solar events on the magnetosphere, ionosphere and thermosphere. Ann. Geophys.24, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Howard, T.: 2014, Space Weather and Coronal Mass Ejections. Springer, Berlin. ADS .

    Book  Google Scholar 

  • Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys.23, 625. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006a, Properties of interplanetary coronal mass ejections at one AU during 1995 2004. Solar Phys.239, 393. DOI . ADS .

    Article  ADS  Google Scholar 

  • Jian, L., Russell, C.T., Luhmann, J.G., Skoug, R.M.: 2006b, Properties of stream interactions at one AU during 1995 2004. Solar Phys.239, 337. DOI . ADS .

    Article  ADS  Google Scholar 

  • Kasaba, Y., Matsumoto, H., Hashimoto, K., Anderson, R.R., Bougeret, J.-L., Kaiser, M.L., Wu, X.Y., Nagano, I.: 1998, Remote sensing of the plasmapause during substorms: geotail observation of nonthermal continuum enhancement. J. Geophys. Res.103(A9), 20389. DOI .

    Article  ADS  Google Scholar 

  • Kerdraon, A., Delouis, J.-M.: 1997, The Nançay radioheliograph. In: Trottet, G. (ed.) Coronal Physics from Radio and Space Observations, Lect. Notes in Phys.483, Springer, Berlin, 192. DOI . ADS .

    Chapter  Google Scholar 

  • Krauss, S., Temmer, M., Veronig, A.M., Baur, O., Lammer, H.: 2015, Thermosphere and geomagnetic response to interplanetary coronal mass ejections observed by ACE and GRACE: statistical results. J. Geophys. Res.120, 8848. DOI . ADS .

    Article  Google Scholar 

  • Lathuillère, C., Menvielle, M., Marchaudon, A., Bruinsma, S.: 2008, A statistical study of the observed and modeled global thermosphere response to magnetic activity at middle and low latitudes. J. Geophys. Res.113, 7311. DOI . ADS .

    Article  Google Scholar 

  • Leamon, R.J., Canfield, R.C., Jones, S.L., Lambkin, K., Lundberg, B.J., Pevtsov, A.A.: 2004, Helicity of magnetic clouds and their associated active regions. J. Geophys. Res.109, A05106. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.-B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.-J., Quivers, A.-J.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: model-fitted parameters, associated errors and classifications. Ann. Geophys.24, 215. DOI .

    Article  ADS  Google Scholar 

  • Li, Y., Luhmann, J.G., Lynch, B.J., Kilpua, E.K.J.: 2011, Cyclic reversal of magnetic cloud poloidal field. Solar Phys.270, 331. DOI . ADS .

    Article  ADS  Google Scholar 

  • Lin, J., Raymond, J.C., van Ballegooijen, A.A.: 2004, The role of magnetic reconnection in the observable features of solar eruptions. Astrophys. J.602, 422. DOI . ADS .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Yang, Z., Wang, R., Luhman, J.G., Richardson, J.D., Lugaz, N.: 2014, Sun-to-Earth characteristics of two coronal mass ejections interacting near 1 AU: formation of a complex ejecta and generation of a two-step geomagnetic storm Astrophys. J. Lett.793, L41. DOI ADS .

    Article  ADS  Google Scholar 

  • Louarn, P.: 2006, Generation of aurora kilometric radiation in bounded source regions. In: LaBelle, J.W., Treumann, R.A. (eds.) Geospace Electromagnetic Waves and Radiation, Lect. Notes Phys.687, Springer, Berlin, 55. DOI .

    Chapter  Google Scholar 

  • Louarn, P., Hilgers, A., Roux, A., de Villedary, C., Gurnett, D.A., Kurth, W.S.: 1994, Correlation between terrestrial myriametric and kilometric radio bursts observed with Galileo. J. Geophys. Res.99, 23. ADS .

    Article  ADS  Google Scholar 

  • Luoni, M.L., Mandrini, C.H., Dasso, S., van Driel-Gesztelyi, L., Démoulin, P.: 2005, Tracing magnetic helicity from the solar corona to the interplanetary space. J. Atmos. Solar-Terr. Phys.67, 1734. DOI . ADS .

    Article  ADS  Google Scholar 

  • Martínez Oliveros, J.C., Raftery, C.L., Bain, H.M, Liu, Y., Krupar, V., Bale, S., Krucker, S.: 2012, The 2010 August 1 type II burst: a CME-CME interaction and its radio and white-light manifestations. Astrophys. J.748, 66. DOI . ADS .

    Article  ADS  Google Scholar 

  • Matsumoto, H., Nagano, I., Anderson, R.R., Kojima, H., Hashimoto, K., Tsutsui, M., Okada, T., Kimura, I., Omura, Y., Okada, M.: 1994, Plasma wave observations with GEOTAIL spacecraft. J. Geomagn. Geoelectr.46(1), 59. DOI .

    Article  ADS  Google Scholar 

  • Mayaud, P.N.: 1980, Derivation, meaning, and use of geomagnetic indices. In: Spilhaus, Jr., A.F. (eds.), Geophys. Monogr. Ser., 22, Am. Geophys. Union, Washington, 1.

    Google Scholar 

  • McCreadie, H., Menvielle, M.: 2010, The PC index: review of methods. Ann. Geophys.28, 1887. DOI .

    Article  ADS  Google Scholar 

  • Menvielle, M., Berthelier, A.: 1991, The K-derived planetary indices: description and availability. Rev. Geophys. Space Phys.29, 415. DOI .

    Article  Google Scholar 

  • Menvielle, M., Lathuillère, C., Bruinsma, S., Viereck, R.: 2007, A new method for studying the thermospheric density variability derived from CHAMP/STAR accelerometer data for magnetically active conditions. Ann. Geophys.25, 1949. DOI . ADS .

    Article  ADS  Google Scholar 

  • Menvielle, M., Iyemori, T., Marchaudon, A., Nose, M.: 2011, Geomagnetic indices. In: Mandea, M., Korte, M. (eds.) Geomagnetic Observations and Models, IAGA Special Sopron Book Series, Q2, 5 Springer, Berlin, 183. DOI .

    Chapter  Google Scholar 

  • Müller, D., Marsden, R.G., St. Cyr, O.C., Gilbert, H.R.: 2013, Solar orbiter. Solar Phys.285(1), 25. DOI .

    Article  ADS  Google Scholar 

  • Newell, P.T., Sotirelis, T., Liou, K., Meng, C.-I., Rich, F.J.: 2007, A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J. Geophys. Res.112, 1206. DOI . ADS .

    Article  Google Scholar 

  • Nishida, A.: 1994, The GEOTAIL mission. Geophys. Res. Lett.21, 2871. DOI . ADS .

    Article  ADS  Google Scholar 

  • Nose, M., Iyemori, T., Sugiura, M., Kamei, T.: 2015, Geomagnetic Dst Index, World Data Center for Geomagnetism, Kyoto, DOI .

    Book  Google Scholar 

  • Perreault, W.K., Akasofu, S.-I.: 1978, A study of geomagnetic storms. Geophys. J. Roy. Astron. Soc.54, 547.

    Article  ADS  Google Scholar 

  • Pick, M., Démoulin, P., Krucker, S., Malandraki, O., Maia, D.: 2005, Radio and X-ray signatures of magnetic reconnection behind an ejected flux rope. Astrophys. J.625, 1019. DOI . ADS .

    Article  ADS  Google Scholar 

  • Pick, M., Stenborg, G., Démoulin, P., Zucca, P., Lecacheux, A.: 2016, Homologous solar events on 2011 January 27: build-up and propagation in a complex coronal environment. Astrophys. J.823, 5. DOI . ADS .

    Article  ADS  Google Scholar 

  • Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: 2002, NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res.107, 1468. DOI .

    Article  Google Scholar 

  • Reigber, C., Lühr, H., Schwintzer, P.: 2002, CHAMP mission status. Adv. Space Res.30, 129. DOI . ADS .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: 2010, Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996 – 2009): catalog and summary of properties. Solar Phys.264, 189. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruohoniemi, J.M., Greenwald, R.A.: 1996, Statistical patterns of high-latitude convection obtained from Goose Bay HF radar observations. J. Geophys. Res.101, 21743. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruohoniemi, J.M., Greenwald, R.A.: 2005, Dependencies of high-latitude plasma convection: consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns. J. Geophys. Res.110, A09204. DOI . ADS .

    Article  ADS  Google Scholar 

  • Ruzmaikin, A., Martin, S., Hu, Q.: 2003, Signs of magnetic helicity in interplanetary coronal mass ejections and associated prominences: case study. J. Geophys. Res.108, 1096. DOI . ADS .

    Article  Google Scholar 

  • Saiz, E., Cerrato, Y., Cid, C., Dobrica, V., Hejda, P., Nenovski, P., Stauning, P., Bochnicek, J., Danov, D., Demetrescu, C., Gonzalez, W.D., Maris, G., Teodosiev, D., Valach, F.: 2013, Geomagnetic response to solar and interplanetary disturbances. J. Space Weather Space Clim.3, A260000. DOI . ADS .

    Article  Google Scholar 

  • Schmieder, B.: 2017, Extreme solar storms based on solar magnetic field. J. Atmos. Solar-Terr. Phys. DOI .

    Article  Google Scholar 

  • Schmieder, B., Aulanier, G., Vršnak, B.: 2015, Flare-CME models: an observational perspective (invited review). Solar Phys.. DOI . ADS .

    Article  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys.23, 1033. DOI . ADS .

    Article  ADS  Google Scholar 

  • Sibeck, D.G., Lopez, R.E., Roelof, E.C.: 1991, Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res.96(A4), 5489. DOI .

    Article  ADS  Google Scholar 

  • Siscoe, G.L., Crooker, N.U., Siebert, K.D.: 2002, Transpolar potential saturation: roles of region 1 current system and solar wind ram pressure. J. Geophys. Res.107(A10), SMP 21, 1321. DOI .

    Article  Google Scholar 

  • Sugiura, M.: 1964, Hourly values of equatorial Dst for the IGY. Ann. Int. Geophys., 35, 49.

    Google Scholar 

  • Svalgaard, L.: 1977, Geomagnetic activity: dependence on solar wind parameters. In: Zirker, J. (ed.) Skylab Workshop Monograph on Coronal Holes, 35, Colorado Univ. Press, Boulder, 371.

    Google Scholar 

  • Taylor, J.R., Lester, M., Yeoman, T.K., 1994, A superposed epoch analysis of geomagnetic storms. Ann. Geophys.12, 612. DOI . ADS .

    Article  ADS  Google Scholar 

  • Tian, A.M., Zong, Q.G., Wang, Y.F., Shi, Q.Q., Fu, S.Y., Pu, Z.Y.: 2010, A series of plasma flow vortices in the tail plasma sheet associated with solar wind pressure enhancement. J. Geophys. Res.115, 9204. DOI . ADS .

    Article  Google Scholar 

  • Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., Shanmugaraju, A.: 2013, Propagation of interplanetary coronal mass ejections: the drag-based model. Solar Phys.285, 295. DOI . ADS .

    Article  ADS  Google Scholar 

  • Webb, D.F., Howard, T.A.: 2012, Coronal mass ejections: observations. Living Rev. Solar Phys.9, 3. DOI .

    Article  ADS  Google Scholar 

  • Wimmer-Schweingruber, R.F.: 2014, Interplanetary disturbances affecting space weather. In: Schmieder, B., Malherbe, J.-M., Wu, S.T. (eds.) IAU Symp., 300, Cambridge University Press, Cambridge, 297. DOI . ADS .

    Chapter  Google Scholar 

  • Xie, H., Gopalswamy, N., Lara, A., Yashiro, S.: 2004, Improved Empirical CME Arrival Time Prediction Model. AGU Fall Meeting Abs. ADS .

  • Yashiro, S., Akiyama, S., Gopalswamy, N., Howard, R.A.: 2006, Different power-law indices in the frequency distributions of flares with and without coronal mass ejections. Astrophys. J. Lett.650, L143. DOI . ADS .

    Article  ADS  Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} < -100~\text{nT}\)) during 1996 – 2005. J. Geophys. Res.112, 10102. DOI . ADS .

    Article  Google Scholar 

Download references

Acknowledgements

The results presented in this article rely on geomagnetic indices calculated and made available by ISGI Collaborating Institutes from data collected at magnetic observatories. We thank the national institutes involved, the INTERMAGNET network and ISGI (isgi.unistra.fr). The authors would like also to acknowledge the CDPP-Plasma Physics Data Centre (cdpp.eu/) and MEDOC for SOHO data (medoc.ias.u-psud.fr). EIT movies can be found at www.ias.u-psud.fr/eit/movies/ and the list of CMEs at cdaw.gsfc.nasa.gov/. The Cluster data used are on the Cluster Science Data System (CSDS) web site (www.cluster.rl.ac.uk/csdsweb/). H. Kojima from RISH, Kyoto University, is thanked for making available Geotail Plasma Wave Instrument (PWI) dynamic spectra (space.rish.kyoto-u.ac.jp/gtlpwi/). We thank the ACE/SWEPAM and the ACE/MAG instrument teams, and the ACE Science Center for providing the ACE data. SOHO is a project of international collaboration between ESA and NASA. The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut für Aeronomie (Germany), Laboratoire d’Astronomie Spatiale (France), and the University of Birmingham (UK). Wind/WAVES radio products and plots are provided by the National Aeronautics and Space Administration (GSFC). The Nançay Radioheliograph (NRH) and Decameter arrays (DAM) are operated by the Paris Observatory; the data are accessible through the “Radio Monitoring site” (secchirh.obspm.fr) and DAM data by request through the Nançay site. The Radio Solar Telescope Network (RSTN) is operated by the U.S. Air Force Weather Agency. We acknowledge the access to the radio data archives from several sites managed by solar observatories: ARTEMIS (Thermopylae, Athens University), Hiraiso (Japan), Nobeyama (Japan), Ondrejov (Czech Republic), ETH Zurich Radioastronomy (Switzerland). We thank G. Mann and J. Rendtel for the Potsdam radio spectra. Operation in 2002 of the northern SuperDARN radars was supported by the national funding agencies of the United States, Canada, the United Kingdom, France, and Japan. M. Pick thanks A. Hamini, R. Romagnan, and M.P. Issartel for their help in the data analysis and A. Lecacheux for fruitful discussions. N. Cornilleau-Wehrlin thanks P. Canu and O. Le Contel for fruitful discussions. B. Grison acknowledges support of GACR grant No 18-05285S, of the Praemium Academiae Award, and of the Europlanet 2020 research infrastructure. Europlanet 2020 RI has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 654208. The authors thank the referee for many helpful suggestions allowing us to improve this long article. The authors thank the Programme National Soleil-Terre. Finally, the authors want to express their warmest thanks to C. Lathuillère and N. Vilmer for their important collaboration at the beginning of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Bocchialini.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Earth-affecting Solar Transients

Guest Editors: Jie Zhang, Xochitl Blanco-Cano, Nariaki Nitta, and Nandita Srivastava

Appendix: Event Timing and Solar-Wind Observations

Appendix: Event Timing and Solar-Wind Observations

We look into solar-wind data a few hours before each SSC in order to find the cause of the compression. Taking into account the propagation time, we are able to find an increase in the density and/or velocity that causes the SSC. We refer to these jumps as discontinuities of solar-wind perturbations. The discontinuity times at L1 are gathered in Table 14 (ACE data), column \(t_{ \mathrm{d}}\); they usually happen from 30 to 60 minutes prior to the SSC. Then we identify later on if the perturbations following these shocks are ICMEs or other perturbation. \(t_{\mathrm{s}}\) and \(t_{\mathrm{e}}\) when different from \(t_{\mathrm{d}}\) indicate the start and end times of the perturbation. The \([t_{\mathrm{s}},t_{ \mathrm{e}}]\) interval marks the sheath of the solar-wind perturbation, when observed.

Table 14 Observations at L1 for each SSC in 2002. Events are classified in five categories: ICME with (MC) or without (ICME) magnetic clouds, corotating and stream interaction regions (CIR/SIR), shocks (Shock), and miscellaneous (Misc.) when we cannot decide. \(t_{ \mathrm{d}}\) is the time of the discontinuity that later on causes the SSC. For each MC and ICME, \(t_{\mathrm{s}}\) and \(t_{\mathrm{e}}\) are the start and end times (rounded up) of the ICME. Velocities are given: before the discontinuity (\(V_{\mathrm{up}}\)), at the discontinuity (\(V_{ \mathrm{d}}\)), at \(t_{\mathrm{s}}\) (\(V_{s}\)) and at \(t_{\mathrm{e}}\) (\(V _{\mathrm{e}}\)). \(B^{*}_{\mathrm{z<0}}\) is a normalized value of the negative part of the IMF z-component (see Section 4.2). We provide reference to catalogs that list the events. The references to these catalogs have been numbered as 1, 2, 3, 4, 5, 6, 7, and 8, and the numbers correspond to Huttunen et al. (2005), Jian et al. (2006a), Jian et al. (2006b), Lepping et al. (2006), Li et al. (2011), Richardson and Cane (2010), Zhang et al. (2007), and Gopalswamy et al. (2010b), respectively.

To look at the geoeffectiveness of the solar-wind structures, we use OMNIWEB data to transport data from L1 to the bow-shock nose. Although the bow-shock crossing can modify SW properties, these data do not contain the exact cause of the magnetosphere compression. Nevertheless one can reasonably believe that an increase of either the SW density or the velocity upstream of the bow shock is still present downstream, even with a different intensity.

In the interplanetary medium, ICMEs are generally first identified by a shock (also called leading shock) in velocity, density, and magnetic field, then followed by a highly fluctuating region, the so-called ICME sheath. MCs appear in the central part of ICMEs with a magnetic structure that is well defined and resembles a flux rope with a slowly rotating magnetic field and low temperatures. We thus consider the following dataset at L1 (cf. also Figure 1): the date, density, temperature, and bulk flow velocity of the solar wind, the solar-wind pressure, and the IMF intensity and orientation. The orientation is defined by two angles (\(\theta_{\mathrm{IMF}}\) and \(\phi_{\mathrm{IMF}}\)). \(\theta_{ \mathrm{IMF}}\) is defined by the deviation of the IMF from the \((X,Y)_{\mathrm{GSM}}\) plane (\(\theta_{\mathrm{IMF}}=90^{\circ}\) is aligned with \(Z_{\mathrm{GSM}}\)), \(\phi_{\mathrm{IMF}}\) is the azimuth in the \((X,Y)_{\mathrm{GSM}}\) plane (\(\phi_{\mathrm{IMF}}=0^{\circ}\) is parallel to the Earth–Sun axis),

By coupling these measurements with several lists describing the properties of the different solar-wind processes, it is possible to identify the cause of the terrestrial magnetosphere response.

At L1 we sort the SSC-related events into five categories: MC, ICME, Misc., Shock, and CIR/SIR (see Section 2.1). Table 15 gathers ICME and MC properties observed at L1. We compare parameter values in the sheath to the values in the cloud itself. Similar parameters are presented for the Misc. and Shocks in Table 16, and for CIR/SIR events in Table 17. In the latter case, we compare properties before and after the stream interface (SI). Many results presented in Section 4.2 are based on these tables.

Table 15 Solar-wind properties in the sheath and in the ICME (MC and non-MC) itself. Each ICME is identified using its negative peak value \(B_{\mathrm{pz}}\). For the sheath and the ICME itself, we list the following: total (sheath or ICME) duration, duration between structure start time and time of the minimum values of Dst, Dst minimum value inside the structure, mean \(\beta\), mean \(M_{A}\), normalized and integrated \(B_{\mathrm{z<0}}^{*}\) value until the time of min(Dst) (n/a means no negative z-component of the IMF during the period for which \(B_{\mathrm{z<0}}^{*}\) is calculated), field rotation (e.g. SEN stands for south–east–north and indicates the sequence of the field direction, small letters indicate a small component) and chirality (in the case of MC). We considered the OMNI dataset propagated to the bow-shock nose location.
Table 16 Solar-wind properties in the Misc. structures and the Shocks. We list the following: normalized and integrated \(B_{\mathrm{z<0}} ^{*}\) parameter, event duration, duration between SSC and min(Dst), min(Dst) value, negative peak value \(B_{\mathrm{pz}}\), mean \(\beta\), mean \(M_{A}\), mean \(P_{\mathrm{SW}}\), and maximum jump in solar-wind velocity ration inside the Misc. structures or across the shock for the Shocks. We considered the OMNI dataset propagated to the bow-shock nose location.
Table 17 Solar-wind properties in the CIR/SIR structures. Each event is presented with its normalized and integrated \(B_{\mathrm{z}<0}^{*}\) value. We list the following before and after the SI: event duration (from SSC to SI, and from SI to the end), duration between SSC and the time of min(Dst), min(Dst), negative peak value \(B_{\mathrm{pz}}\), mean \(\beta\), mean \(M_{A}\). The last two columns show the maximum \(P_{\mathrm{SW}}\) reached and the maximum jump in solar-wind velocity ratio across the SI. Note that the time between SSC and min(Dst) can be negative before the SI. This is due to the fact that the CIR/SIR start time in the literature can be recorded as being before the SSC time. We considered the OMNI dataset propagated to the location of the bow-shock nose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocchialini, K., Grison, B., Menvielle, M. et al. Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects. Sol Phys 293, 75 (2018). https://doi.org/10.1007/s11207-018-1278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-018-1278-5

Keywords

Navigation