Skip to main content
Log in

Impact of Terrain Heterogeneity on Coherent Structure Properties: Numerical Approach

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A three-dimensional large-eddy simulation (LES) model, which includes the effects of plant–atmosphere interactions, is used to study the effects of surface inhomogeneities on near-surface coherent structures over an open field and behind a forest canopy. These simulated conditions are representative of two wind sectors of the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) experimental site at the Institut Pierre Simon Laplace, Palaiseau, France. Coherent structure properties deduced from wavelet transforms of the simulated near-surface vertical velocity time series are not modified by upstream terrain heterogeneities, in agreement with site measurements. This feature is related to the nature of structures detected from the vertical velocity time series. The turbulence close to the surface seems composed of both local coherent structures and large coherent structures reflecting outer-layer properties, which depend on the overall surface heterogeneity or upstream heterogeneity. It is argued that the streamwise velocity is representative of these large outer-layer structures that impinge onto the ground through a top-down mechanism as identified through the space–time correlation of the wind velocity components. In contrast, the vertical velocity is more representative of small structures resulting from the impingement of the large outer-layer structures. These small structures represent locally-generated, active turbulence, which adjusts rapidly to local surface conditions, and consequently they are only weakly dependent on upstream heterogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422: 1–54

    Article  Google Scholar 

  • Barthlott C, Drobinski P, Fesquet C, Dubos T, Pietras C (2007) Long-term study of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 125(1): 1–24

    Article  Google Scholar 

  • Byun DW (1990) On the analytical solutions of flux–profile relationships for the atmospheric surface-layer. J Appl Meteorol 29(7): 652–657

    Article  Google Scholar 

  • Carlotti P (2002) Two-point properties of atmospheric turbulence very close to the ground: comparison of a high resolution les with theoretical models. Boundary-Layer Meteorol 104(3): 381–410

    Article  Google Scholar 

  • Chen W, Novak MD, Black TA, Lee X (1997) Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time. Boundary-Layer Meteorol 84: 99–123

    Article  Google Scholar 

  • Cleugh HA, Hughes DE (2002) Impact of shelter on crop microclimates: a synthesis of results from wind tunnel and field experiments. Aust J Exp Agric 42(6): 679–701

    Article  Google Scholar 

  • Drobinski P, Foster RC (2003) On the origin of near-surface streaks in the neutrally stratified planetary boundary layer. Boundary-Layer Meteorol 108: 247–256

    Article  Google Scholar 

  • Drobinski P, Brown R, Flamant P, Pelon J (1998) Evidence of organised large eddies by ground-based Doppler lidar, sonic anemometer and sodar. Boundary-Layer Meteorol 88: 343–361

    Article  Google Scholar 

  • Drobinski P, Carlotti P, Newson RK, Banta RM, Foster RC, Redelsperger JL (2004) The structure of the near-neutral atmospheric surface layer. J Atmos Sci 61(6): 699–714

    Article  Google Scholar 

  • Drobinski P, Carlotti P, Redelsberger J-L, Banta RM, Masson V, Newsom RK (2007) Numerical and experimental investigation of the neutral atmospheric surface layer. J Atmos Sci 64: 137–156

    Article  Google Scholar 

  • Drobinski P, Foster RC, Pietras C (2006) Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy. Geophys Res Lett 108: 247–256

    Google Scholar 

  • Dubos T, Drobinski P, Carlotti P (2008) Turbulence anisotropy carried by streaks in the neutral atmospheric surface layer. J Atmos Sci 65: 2631–2645

    Article  Google Scholar 

  • Dupont S, Brunet Y (2006) Simulation of turbulent flow in an urban forested park damaged by a windstorm. Boundary-Layer Meteorol 120(1): 133–161

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008a) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126: 51–71

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008b) Impact of forest edge shape on tree stability: a large-eddy simulation study. Forestry 81: 299–315

    Article  Google Scholar 

  • Dupont S, Brunet Y (2008c) Influence of foliar density profile on canopy flow: a large-eddy simulation study. Agric For Meteorol 148: 976–990

    Article  Google Scholar 

  • Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630: 93–128

    Article  Google Scholar 

  • Dupont S, Brunet Y, Finnigan JJ (2008) Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q J Roy Meteorol Soc 134: 1911–1929

    Article  Google Scholar 

  • Dwyer MJ, Patton EG, Shaw RH (1997) Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol 84(1): 23–43

    Article  Google Scholar 

  • Fesquet C (2008) Structure de la turbulence atmosphérique à proximité de la surface. PhD thesis, Ecole Polytechnique, 131 pp

  • Fesquet C, Barthlott C, Drobinski P, Dubos T, Pietras C, Haeffelin M (2006) Impact of terrain heterogeneity on near-surface turbulence: long-term investigation at sirta observatory. In: 17th symposium on boundary layers and turbulence, number J6.6, San Diego, CA

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571

    Article  Google Scholar 

  • Foster RC, Brown RA (1994) On large-scale PBL modelling: surface layer models. Glob Atmos Ocean Syst 2: 185–198

    Google Scholar 

  • Gao W, Shaw RH, Paw U KT (1989) Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol 47: 349–377

    Article  Google Scholar 

  • Grant ALM (1986) Observations of boundary layer structure made during the 1981 kontur experiment. Q J Roy Meteorol Soc 112: 825–841

    Article  Google Scholar 

  • Grant ALM (1992) The structure of turbulence in the near-neutral atmospheric boundary layer. J Atmos Sci 49: 226–239

    Article  Google Scholar 

  • Haeffelin M, Barthès L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Delanoë J, Drobinski P, Dufresne J, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaître Y, Mathieu A, Morille Y, Naud C, Noël V, Pelon J, Pietras C, Protat A, Romand B, Scialom G, Vautard R (2005) Sirta, a ground-based atmospheric observatory for cloud and aerosol research. Ann Geophys 23: 253–275

    Article  Google Scholar 

  • Högström U, Hunt JCR, Smedman AS (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103(1): 101–124

    Article  Google Scholar 

  • Hommema SE, Adrian RJ (2003) Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol 106(1): 147–170

    Article  Google Scholar 

  • Hunt JCR, Carlotti P (2001) Statistical structure at the wall of the high reynolds number turbulent boundary layer. Flow Turbul Combust 66(4): 453–475

    Article  Google Scholar 

  • Hunt JCR, Morrison JF (2000) Eddy structure in turbulent boundary layers. Eur J Mech B 19: 673–694

    Article  Google Scholar 

  • Kanda M, Hino M (1994) Organized structures in developing turbulent flow within and above a plant canopy, using a large eddy simulation. Boundary-Layer Meteorol 68: 237–257

    Article  Google Scholar 

  • Krusche N, De Oliveira AP (2004) Characterization of coherent structures in the atmospheric surface layer. Boundary-Layer Meteorol 110: 191–211

    Article  Google Scholar 

  • Liu J, Chen JM, Black TA, Novak MD (1996) E-ε modelling of turbulent air flow downwind of a model forest edge. Boundary-Layer Meteorol 77(1): 21–44

    Article  Google Scholar 

  • McNaughton KG (1989) Micrometeorology of shelter belts and forest edges. Philos Trans Roy Soc Lond 323: 351–368

    Article  Google Scholar 

  • McNaughton KG, Brunet Y (2002) Townsend’s hypothesis, coherent structures and Monin-Obukhov similarity. Boundary-Layer Meteorol 102(2): 161–175

    Article  Google Scholar 

  • Moeng C-H (1984) A large-eddy simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41: 2052–2062

    Article  Google Scholar 

  • Moeng C-H, Sullivan PP (1994) A comparison of shear-driven and buoyancy-driven planetary boundary-layer flows. J Atmos Sci 51(7): 999–1022

    Article  Google Scholar 

  • Morille Y, Haeffelin M, Drobinski P, Pelon J (2007) Strat: an automated algorithm to retrieve the vertical structure of the atmosphere from a single channel lidar data. J Atmos Ocean Technol 24: 761–775

    Article  Google Scholar 

  • Morrison JF (2007) The interaction between inner and outer regions of turbulent wall-bounded flow. Philos Trans Roy Soc A 365(1852): 683–698

    Article  Google Scholar 

  • Morrison JF, McKeon BJ, Jiang W, Smits AJ (2004) Scaling of the streamwise velocity component in turbulent pipe flow. J Fluid Mech 508: 99–131

    Article  Google Scholar 

  • Morse AP, Gardiner BA, Marshall BJ (2002) Mechanisms controlling turbulence development across a forest edge. Boundary-Layer Meteorol 103: 227–251

    Article  Google Scholar 

  • Nicholls S, Readings CJ (1979) Aircraft observations of the structure of the lower boundary layer over the sea. Q J Roy Meteorol Soc 105: 785–802

    Article  Google Scholar 

  • Paw U KT, Brunet Y, Collineau S, Shaw RH, Maitani T, Qiu J, Hipps L (1992) On coherent structures in turbulence above and within agricultural plant canopies. Agric For Meteorol 61: 55–68

    Article  Google Scholar 

  • Pénelon T, Calmet I, Mironov DV (2001) Micrometeorological simulations over a complex terrain with submeso: a model study using a novel pre-processor. Int J Environ Pollut 16: 583–602

    Google Scholar 

  • Raupach MR, Thom AS, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces. Boundary-Layer Meteorol 18: 373–397

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing- layer analogy. Boundary-Layer Meteorol 78: 351–382

    Article  Google Scholar 

  • Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent-flow above and within a forest. Boundary-Layer Meteorol 61(1–2): 47–64

    Article  Google Scholar 

  • Shen SH, Leclerc MY (1997) Modelling the turbulence structure in the canopy layer. Agric For Meteorol 87(1): 3–25

    Article  Google Scholar 

  • Su H-B, Shaw RH, Paw UKT, Moeng C-H, Sullivan PS (1998) Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88: 363–397

    Article  Google Scholar 

  • Su HB, Shaw RH, Paw UKT (2000) Two-point correlation analysis of neutrally stratified flow within and above a forest from large-eddy simulation. Boundary-Layer Meteorol 94(3): 423–460

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, U.K., p 429

    Google Scholar 

  • Tuzet A, Wilson JD (2007) Measured winds about a thick hedge. Agric For Meteorol 145(3-4): 195–205

    Article  Google Scholar 

  • Wang H, Takle ES (1995) A numerical-simulation of boundary-layer flows near shelterbelts. Boundary-Layer Meteorol 75(1-2): 141–173

    Article  Google Scholar 

  • Watanabe T (2004) Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Boundary-Layer Meteorol 112(2): 307–341

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K (1995) ARPS version 4.0 users guide. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK, p 380

    Google Scholar 

  • Xue M, Droegemeier KK, Wong V (2000) The advanced regional prediction system (ARPS) - a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification. Meteorol Atmos Phys 75(3–4): 161–193

    Article  Google Scholar 

  • Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K, Carr F, Weber D, Liu Y, Wang D (2001) The advanced regional prediction system (ARPS) - a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications. Meteorol Atmos Phys 76(3–4): 143–165

    Article  Google Scholar 

  • Yang B, Morse AP, Shaw RH, Paw U KT (2006a) Large-eddy simulation of turbulent flow across a forest edge. Part II: momentum and turbulent kinetic energy budgets. Boundary-Layer Meteorol 121(3): 433–457

    Article  Google Scholar 

  • Yang B, Raupach MR, Shaw RH, Tha K, Paw U KT, Morse AP (2006b) Large-eddy simulation of turbulent flow across a forest edge. Part I: flow statistics. Boundary-Layer Meteorol 120(3): 377–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Fesquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fesquet, C., Dupont, S., Drobinski, P. et al. Impact of Terrain Heterogeneity on Coherent Structure Properties: Numerical Approach. Boundary-Layer Meteorol 133, 71–92 (2009). https://doi.org/10.1007/s10546-009-9412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9412-4

Keywords

Navigation