Skip to main content

Advertisement

Log in

Vertical Structure of the Urban Boundary Layer over Marseille Under Sea-Breeze Conditions

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

During the UBL-ESCOMPTE program (June–July 2001), intensive observations were performed in Marseille (France). In particular, a Doppler lidar, located in the north of the city, provided radial velocity measurements on a 6-km radius area in the lowest 3 km of the troposphere. Thus, it is well adapted to document the vertical structure of the atmosphere above complex terrain, notably in Marseille, which is bordered by the Mediterranean sea and framed by numerous massifs. The present study focuses on the last day of the intensive observation period 2 (26 June 2001), which is characterized by a weak synoptic pressure gradient favouring the development of thermal circulations. Under such conditions, a complex stratification of the atmosphere is observed. Three-dimensional numerical simulations, with the Méso-NH atmospheric model including the town energy balance (TEB) urban parameterization, are conducted over south-eastern France. A complete evaluation of the model outputs was already performed at both regional and city scales. Here, the 250-m resolution outputs describing the vertical structure of the atmosphere above the Marseille area are compared to the Doppler lidar data, for which the spatial resolution is comparable. This joint analysis underscores the consistency between the atmospheric boundary layer (ABL) observed by the Doppler lidar and that modelled by Méso-NH. The observations and simulations reveal the presence of a shallow sea breeze (SSB) superimposed on a deep sea breeze (DSB) above Marseille during daytime. Because of the step-like shape of the Marseille coastline, the SSB is organized in two branches of different directions, which converge above the city centre. The analysis of the 250-m wind fields shows evidence of the role of the local topography on the local dynamics. Indeed, the topography tends to reinforce the SSB while it weakens the DSB. The ABL is directly affected by the different sea-breeze circulations, while the urban effects appear to be negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banta R. M. (1995). ‘Sea Breezes Shallow and Deep on the California Coast’. Mon. Wea. Rev. 123: 3614–3622

    Article  Google Scholar 

  • Banta R. M., Olivier L. D. and Levinson D. H. (1993). ‘Evolution of the Monterey Bay Sea-Breeze Layer as Observed by Pulsed Doppler Lidar’. J. Atmos. Sci. 50: 3959–3982

    Article  Google Scholar 

  • Bastin S. and Drobinski P. (2005). ‘Temperature and Wind Velocity Oscillations Along a Gentle Slope During Sea Breeze Events’. Boundary-Layer Meteorol. 114: 573–594

    Article  Google Scholar 

  • Bastin S., Drobinski P., Dabas A. M., Delville P., Reitebuch O. and Werner C. (2005a). ‘Impact of the Rhône and Durance Valleys on Sea-Breeze Circulation in the Marseille Area’. Atmos. Res. 74: 303–328

    Article  Google Scholar 

  • Bastin S., Drobinski P., Dabas A., Delville P., Reitebuch O. and Werner C. (2004). ‘Sea Breeze Case Study using a Combination of Observations and Numerial Stimulation in Complex Terrain in Southern France: Contribution to Matter Transport’. Mt Washington Valley, New Hampshire, USA

    Google Scholar 

  • Beffrey G., Jaubert G. and Dabas A. M. (2004). ‘Foehn Flow and Stable Air-Mass in the Rhine Valley: The Beginning of a MAP Event’. Quart. J. Roy. Meteorol. Soc. 130: 541–560

    Article  Google Scholar 

  • Calhoun R., Heap R. B., Princevac M., Sommer J., Fernando H. J. S. and Ligon D. (2004). ‘Measurement of Winds Flowing Toward an Urban Area Using Coherent Doppler Lidar’. Fifth Conference on Urban Environment Vancouver, Canada

    Google Scholar 

  • Carroll J. J. (1989). ‘Analysis of Airborne Doppler Lidar Measurements of the Extended California Sea Breeze’. J. Atmos. Ocean. Technol. 6: 820–831

    Article  Google Scholar 

  • CEC (1993). ‘CORINE Land Cover, Technical Guide’. Office for the Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Chiba O., Kobayashi F., Naito G. and Sassa K. (1999). ‘Helicopter Observations of the Sea Breeze over a Coastal Area’. J. Appl. Meteorol. 38: 481–492

    Article  Google Scholar 

  • Cros B., Durand P., Cachier H., Drobinski P., Frejafon E., Kottmeier C., Perros P. E., Peuch V.-H., Ponche J. L., Robin D., Saïd F., Toupance G. and Wortham H. (2004). ‘The ESCOMPTE Program: An Overview’. Atmos. Res. 69: 241–279

    Article  Google Scholar 

  • Darby L. S., Banta R. M. and Pielke R. A. (2002). ‘Comparisons between Mesoscale Model Terrain Sensitivity Studies and Doppler Lidar Measurements of the Sea Breeze at Monterey Bay’. Mon. Wea. Rev. 130: 2813–2838

    Article  Google Scholar 

  • Davies F., Collier C. G., Pearson G. N. and Bozier K. E. (2004). ‘Doppler Lidar Measurements of Turbulent Structure Function over an Urban Area’. J. Atmos. Ocean. Technol. 21: 753–761

    Article  Google Scholar 

  • Deardorff J. W. (1974). ‘Three-Dimensional Numerical Study of Turbulence in an Entraining Mixed Layer’. Boundary-Layer Meteorol. 7: 199–126

    Google Scholar 

  • Delbarre S., Augustin P., Freville P., Campistron B., Saïd F., Bénech B., Lohou F., Puygrenier V. and Fréjafon E. (2005). ‘Ground-Based Remote Sensing Observation of the Complex Behaviour of the Marseille Boundary Layer during ESCOMPTE’. Atmos. Res. 74(1–4): 403–433

    Article  Google Scholar 

  • Dousset B. and Kermadi S. (2003). ‘Satellites Observation over the Marseille-Berre Area during the UBL/CLU-ESCOMPTE Experiment’. Lódź, Poland

    Google Scholar 

  • Drobinski P., Bastin S., Guénard V., Caccia J.-L., Dabas A. M., Delville P., Protat A., Reitebuch O. and Werner C. (2005a). ‘Summer Mistral at the Exit of the Rhône Valley’. Quart. J. Roy. Meteorol. Soc. 131: 353–375

    Article  Google Scholar 

  • Drobinski, P., Bastin, S., Dusek, J., Zängl, G., and Flamant, P. H.: 2005b, ‘Idealized Simulations of Flow Splitting at the Bifurcation Between Two Valleys: Comparison with the Mesoscale Alpine Program Experiment’, Meteorol. Atmos. Phys., in press.

  • Drobinski P., Dabas A. M., Haeberli C. and Flamant P. H. (2001a). ‘On the Small-Scale Dynamics of Flow Splitting in the Rhine Valley during a Shallow South Foehn Event’. Boundary-Layer Meteorol. 99: 277–296

    Article  Google Scholar 

  • Drobinski P., Dusek J. and Flamant C. (2001b). ‘Diagnostics of Hydraulic Jump and Gap Flow in Stratified Flows over Topography’. Boundary-Layer Meteorol. 98: 475–495

    Article  Google Scholar 

  • Drobinski P., Haeberli C., Richard E., Lothon M., Dabas A. M., Flamant P. H., Furger M. and Steinacker R. (2003). ‘Scale Interaction Processes during the MAP IOP 12 South Foehn Event in the Rhine Valley’. Quart. J. Roy. Meteorol. Soc. 129: 729–753

    Article  Google Scholar 

  • Estoque M. A. (1962). ‘The Sea Breeze as a Function of the Prevailing Synoptic Situation’. J. Atmos. Sci. 19: 244–250

    Article  Google Scholar 

  • Finkele K., Hacker J. M., Kraus H. and Byron-Scott R. A. D. (1995). ‘A Complete Sea Breeze Circulation Cell Derived from Aircraft Observations’. Boundary-Layer Meteorol. 73: 299–317

    Article  Google Scholar 

  • Grimmond C. S. B., Salmond J., Oke T. R., Offerle B. and Lemonsu A. (2004). ‘Flux and Turbulence Measurements at a Densely Built-Up Site in Marseille: Heat, Mass (Water, Carbon Dioxide) and Momentum’. J. Geophys. Res. 109: D24101 doi:10.1029/2004JD004936

    Article  Google Scholar 

  • Guénard V., Drobinski P., Caccia J.-L., Campistron B. and Bénech B. (2005). ‘Experimental Investigation of the Mesoscale Dynamics of the Mistral’. Boundary-Layer Meteorol. 115: 263–288

    Article  Google Scholar 

  • Kambezidis H. D., Peppes A. A. and Melas D. (1995). ‘An Environmental Experiment over Athens Urban Area under Sea Breeze Conditions’. Atmos. Res. 36: 139–156

    Article  Google Scholar 

  • Lafore J.-P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fischer C., Héreil P., Mascart P., Masson V., Pinty J.-P., Redelsperger J.-L., Richard E. and Vilà-Gueraude Arellano J. (1998). ‘The Meso-Nh atmospheric simulation system Part I: Adiabatic Formulation and Control Simulation’. Ann. Geophys. 16: 90–109

    Article  Google Scholar 

  • Lemonsu A., Grimmond C. S. B. and Masson V. (2004). ‘Modelisation of the Surface Energy Budget of an Old Mediterranean City Core’. J. Appl. Meteorol. 43: 312–327

    Article  Google Scholar 

  • Lemonsu, A., Pigeon, G., Masson, V., and Moppert, C.: 2005, ‘Sea-Town Interaction over Marseille: 3D Urban Boundary Layer and Thermodynamic Fields near the Surface’, Theor. Appl. Clim., in press.

  • Lemonsu A. and Masson V. (2002). ‘Simulation of a Summer Urban Breeze over Paris’. Boundary-Layer Meteorol. 104: 463–490

    Article  Google Scholar 

  • Masson V. (2000). ‘A Physically-Based Scheme for the Urban Energy Budget in Atmospheric Models’. Boundary-Layer Meteorol. 94: 357–397

    Article  Google Scholar 

  • Mestayer P., Durand P., Augustin P., Bastin S., Bonnefond J.-M., Bénech B., Campistron B., Coppalle A., Delbarre H., Dousset B., Drobinski P., Druilhet A., Fréjafon E., Grimmond S., Groleau D., Irvine M., Kergomard C., Kermadi S., Lagouarde J.-P., Lemonsu A., Lohou F., Long N., Masson V., Moppert C., Noilhan J., Offerle B., Oke T., Pigeon G., Puygrenier V., Roberts S., Rosant J.-M., Saïd F., Salmond J., Talbaut M. and Voogt J. (2005). ‘The Urban Boundary Layer Field Experiment over Marseille UBL/CLU-ESCOMPTE: Experimental Set-up and First Results’. Boundary-Layer Meteorol. 114: 315–365

    Article  Google Scholar 

  • Noilhan J. and Planton S. (1989). ‘A Simple Parameterization of Land Surface Processes for Meteorological Models’. Mon. Wea. Rev. 117: 536–549

    Article  Google Scholar 

  • Ohashi Y. and Kida H. (2002). ‘Effects of Mountains and Urban Areas on Daytime Local-Circulations in the Osaka and Kyoto Region’. J. Meteorol. Soc. Japan 80: 539–560

    Article  Google Scholar 

  • Physick W. L. and Byron-Scott R. A. D. (1977). ‘Observations of the Sea Breeze in the Vicinity of a Gulf’. Weather 32: 373–381

    Google Scholar 

  • Pooler F. (1963). ‘Airflow over the City in Terrain of Moderate Relief’. J. Appl. Meteorol. 2: 446–455

    Article  Google Scholar 

  • Schär C. and Smith R. B. (1993). ‘Shallow-Water Flow Past Isolated Topography. Part I: Vorticity Production and Wake Formation’. J. Atmos. Sci. 50: 1373–1400

    Article  Google Scholar 

  • Vukovich F. M., King W. J., Dunn J. W. and Worth J. J. B. (1979). ‘Observations and Simulations of the Diurnal Variation of the Urban Heat Island Circulation and Associated Variations of the Ozone Distribution: A Case Study’. J. Appl. Meteorol. 18: 836–854

    Article  Google Scholar 

  • Yoshikado H. and Kondo H. (1989). ‘Inland Penetration of the Sea Breeze in the Suburban Area of Tokyo’. Boundary-Layer Meteorol. 48: 389–407

    Article  Google Scholar 

  • Yoshikado H. (1990). ‘Vertical Structure of the Sea Breeze Penetrating through a Large Urban Complex’. J. Appl. Meteorol. 29: 878–891

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aude Lemonsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemonsu, A., Bastin, S., Masson, V. et al. Vertical Structure of the Urban Boundary Layer over Marseille Under Sea-Breeze Conditions. Boundary-Layer Meteorol 118, 477–501 (2006). https://doi.org/10.1007/s10546-005-7772-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-7772-y

Keywords

Navigation