Skip to main content
Log in

The Salton Sea as critical habitat to migratory and resident waterbirds

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Concern about the Salton Sea ecosystem, based on potential impacts of increasing salinity, contaminants, disease outbreaks, and large die-offs of birds, is heightened because of tremendous prior loss and degradation of wetland habitat in western North America. In 1999, we used a variety of survey methods to describe patterns of abundance of birds at the Salton Sea and in adjacent habitats. Our results further documented the great importance of the Salton Sea within the Pacific Flyway to wintering, migratory, and breeding waterbirds. Exclusive of Eared Grebes, we estimated about 187 000 individual waterbirds at the Salton Sea in January, 88 000 in April, 170 000 in August, and 261 000 in November. Additional surveys of Eared Grebes in November and December suggested the total population of all waterbirds was about 434 000 to 583 000 in those months, respectively. We also documented breeding by about 14 000 pairs of colonial waterbirds. Waterbirds were particularly concentrated along the northern, southwestern, southern, and southeastern shorelines and river deltas. By contrast, some species of wading birds (Cattle Egret, White-faced Ibis, Sandhill Crane) and shorebirds (Mountain Plover, Whimbrel, Long-billed Curlew) were much more numerous in agricultural fields of the Imperial Valley than in wetland habitats at the Sea. Various studies indicate the Salton Sea is of regional or national importance to pelicans and cormorants, wading birds, waterfowl, shorebirds, and gulls and terns. Important taxa are the Eared Grebe, American White Pelican, Double-crested Cormorant, Cattle Egret, White-faced Ibis, Ruddy Duck, Yuma Clapper Rail, Snowy Plover, Mountain Plover, Gull-billed, Caspian, and Black terns, and Black Skimmer. Proposed restoration projects should be carefully assessed to ensure they do not have unintended impacts and are not placed where large numbers of breeding, roosting, or foraging birds concentrate. Similarly, plans to enhance opportunities for recreation or commerce at the Sea should aim to avoid or minimize disturbance to birds. Future research should focus on filling gaps in knowledge needed to effectively conserve birds at the Salton Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alongi, D. M., 1996. The dynamics of benthic nutrient pools and fluxes in tropical mangrove forests. J. mar. Res. 54: 123-148.

    Google Scholar 

  • Alongi, D. M., 1998. Coastal Ecosystem Processes. CRC Press, Boca Raton: 419 pp.

    Google Scholar 

  • Armstrong F. A., C. R. Stearns & J. D. Strickland, 1967. The measurement of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment. Deep-Sea Res. 14: 381-389.

    Google Scholar 

  • Ayukai, T. & D. M. Alongi, 2000. Pelagic carbon fixation and heterotrophy in shallow coastal waters of Sawi Bay, Southern Thailand. Phuket Mar. Biol. Ctr. Spec. Publ. 22: 39-50.

    Google Scholar 

  • Bano, N., M.-U. Nisa, N. Khan, M. Saleem, P. J. Harrison, S. I. Ahmed & F. Azam, 1997. Significance of bacteria in the flux of organic matter in the tidal creeks of the mangrove ecosystem of the Indus River delta, Pakistan. Mar. Ecol. Prog. Ser. 157: 1-12.

    Google Scholar 

  • Benner, R. & R. E. Hodson, 1985. Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Mar. Ecol. Prog. Ser. 23: 221-230.

    Google Scholar 

  • Bower, C. E. & T. Holm-Hansen, 1980. A salicylate-hypochlorite method for determining ammonia in seawater. Can. J. Fish. Aquat. Sci. 37: 794-798.

    Google Scholar 

  • Bronk, D. A., P. M. Glibert & B. B. Ward, 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265: 1843-1846.

    Google Scholar 

  • Carlson, C. A., D. A. Hansell & W. O. Smith, Jr., 1998. Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnol. Oceanogr. 43: 375-386.

    Google Scholar 

  • Cloern, J., 1987. Turbidity as a control on phytoplankton biomass and productivity. Contin. Shelf Res. 7: 1367-1381.

    Google Scholar 

  • del Giorgio, P. A. & J. J. Cole, 1998. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Syst. 29: 503-541.

    Google Scholar 

  • Dittmar, T. & R. J. Lara, 2001. Do mangroves rather than rivers provide nutrients to coastal environments south of the Amazon River? Evidence from long-term flux measurements. Mar. Ecol. Prog. Ser. 213: 67-77.

    Google Scholar 

  • Gong, W. K. & J. E. Ong, 1990. Plant biomass and nutrient flux in a managed mangrove forest in Malaysia. Estuar. coast. shelf Sci. 31: 519-530.

    Google Scholar 

  • Guerrini, F., A. Mazzotti, L. Boni & Pistocchi, 1998. Bacterial-algal interactions in polysaccharide production. Aquat. Microbiol. Ecol. 15: 247-253.

    Google Scholar 

  • CO2 and NH4+ in marine and freshwaters. Limnol. Oceanogr. 37: 1113-1118.

    Google Scholar 

  • Harrison, P. J., N. Khan, K. Yin, M. Saleem, N. Bano, M. Nisa, S. I. Ahmed, N. Rizvi & F. Azam, 1997. Nutrient and phytoplankton dynamics in two mangrove tidal creeks of the Indus River delta, Pakistan. Mar. Ecol. Prog. Ser. 157: 13-19.

    Google Scholar 

  • Hemminga, M. A., F. J. Slim, J. Kazungu, G. M. Ganssen, J. Nieuwenhuize & N. M. Kruyt, 1994. Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Mar. Ecol. Prog. Ser. 106: 291-301.

    Google Scholar 

  • Holmer, M., F. Ø. Andersen, N. Holmboe, E. Kristensen & N. Thongtham, 1999. Transformation and exchange processes in the Bangrong mangrove forest-seagrass bed system, Thailand. Seasonal and spatial variations in benthic metabolism and sulfur biogeochemistry. Aquat. Microbiol. Ecol. 20: 203-212.

    Google Scholar 

  • Holmer, M., F. Ø. Andersen, E. Kristensen & N. Thongtham, 2001. Transformation and exchange processes in the Bangrong mangrove forest-seagrass bed system, Thailand; seasonal variations in benthic primary production and nutrient dynamics. Wetlands Ecol. Management 9: 141-158.

    Google Scholar 

  • Howes, B. L. & Goehringer, D. D., 1994. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh. Mar. Ecol. Prog. Ser. 114: 289-301.

    Google Scholar 

  • Ittekkot, V., 1982. Variations of dissolved organic matter during a plankton bloom: qualitative aspects, based on sugar and amino acid analysis. Mar. Chem. 11: 143-158.

    Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. 2nd edn. Cambridge University Press, Cambridge: 509 pp.

    Google Scholar 

  • Kristensen E. & F. Ø. Andersen, 1987. Determination of organic carbon in marine sediments: comparison of two CHN-analyzer methods. J. exp. mar. Biol. Ecol. 109: 15-23.

    Google Scholar 

  • Kristensen, E., F. Ø. Andersen, N. Holmboe, M. Holmer & N. Thongtham, 2000. Carbon and nitrogen mineralization in sediment of the Bangrong mangrove area, Phuket, Thailand. Aquat. Microb. Ecol. 22: 199-213.

    Google Scholar 

  • Kristensen, E., M. Holmer, G. T. Banta, M. H. Jensen & K. Hansen, 1995. Carbon, nitrogen and sulfur cycling in sediments of the Ao Nam Bor mangrove forest, Phuket, Thailand: a review. Phuket mar. biol. Cent. Res. Bull. 60: 37-64.

    Google Scholar 

  • Lara, R. J. & T. Dittmar, 1999. Nutrient dynamics in a mangrove creek (North Brazil) during the dry season. Mangroves and Salt Marshes 3: 185-195.

    Google Scholar 

  • Madden, C. J. & J. W. Day, 1992. Induced turbulence in rotating bottles affects phytoplankton productivity measurements in turbid waters. J. Plank. Res. 14: 1171-1191.

    Google Scholar 

  • Mohammed, S. M. & R. W. Johnstone, 1995. Spatial and temporal variations in water column nutrient concentrations in a tidally dominated mangrove creek: Chwaka Bay, Zanzibar. Ambio 24: 482-486.

    Google Scholar 

  • Moran, M. A., R. J. Wicks & R. E. Hodson, 1991. Export of dissolved organic matter from a mangrove swamp ecosystem: evidence from natural fluorescence, dissolve lignin phenols, and bacterial secondary production. Mar. Ecol. Prog. Ser. 76: 175-184.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27: 31-36.

    Google Scholar 

  • Nagata, T., 2000. Production mechanisms of dissolved organic matter. In Kirchman, D. L. (ed.), Microbial Ecology of the Ocean. Wiley, New York: 121-152.

    Google Scholar 

  • Pakulski, J. D., 1986. The release of reducing sugars and dissolved organic carbon from Spartina alterniflora Loisel in a Georgia salt marsh. Estuar. coast. shelf Sci. 22: 385-394.

    Google Scholar 

  • Parsons, T. R., Y. Maita & C.M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford: 173 p.

    Google Scholar 

  • Rivera-Monroy, V. H., J. W. Day, R. R. Twilley, F. Vera-Herrera & C. Coronado-Molina, 1995. Flux of nitrogen and sediment in a fringe mangrove forest in Terminos Lagoon, Mexico. Estuar. coast. shelf Sci. 40: 139-160.

    Google Scholar 

  • Rivera-Monroy, V. H., C. J. Madden, J. W. Day, R. R. Twilley, F. Vera-Herrera & H. Alvarez-Guillen, 1998. Seasonal coupling of a tropical mangrove forest and an estuarine water column: enhancement of aquatic primary productivity. Hydrobiologia 379: 41-53.

    Google Scholar 

  • Robertson, A. I., 1986. Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in northeastern Australia. J. exp. mar. Biol. Ecol. 102: 237-248.

    Google Scholar 

  • Søndergaard, M. & M. Middelboe, 1995. A cross-system review of labile dissolved organic carbon. Mar. Ecol. Prog. Ser. 118: 283-294.

    Google Scholar 

  • Søndergaard, M., P. J. le B. Williams, G. Cauwet, B. riemann, C. Robinson, S. Terzic, E. M. S. Woodward & J. Worm, 2000. Net accumulation and flux of dissolved organic carbon and dissolved organic nitrogen in marine plankton communities. Limnol. Oceanogr. 45: 1097-1111.

    Google Scholar 

  • Strom, S. L., R. Benner, S. Ziegler & M. J. Dagg, 1997. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42: 1364-1374.

    Google Scholar 

  • Trott, L. A. & D. M. Alongi, 1999. Variability in surface water chemistry and phytoplankton biomass in two tropical, tidally dominated mangrove creeks. Mar. Freshwat. Res. 50: 451-457.

    Google Scholar 

  • Twilley, R. R., 1985. The exchange of organic carbon in basin mangrove forests in a southwest Florida estuary. Estuar. coast. shelf Sci. 20: 543-557.

    Google Scholar 

  • Williams, P. J. le B., 1990. The importance of losses during microbial growth; commentary on the physiology, measurement and ecology of the release of dissolved organic material. Mar. Microb. Food Webs 4: 175-206.

    Google Scholar 

  • Wolanski, E., Y. Mazda & P. Ridd, 1992. Mangrove hydrodynamics. In Robertson A. I. & D. M. Alongi (eds), Troical Mangrove Ecosystems, Am. Geophys. Union, Washington, DC: 43-62.

    Google Scholar 

  • Wolanski, E., S. Spagnol, S. Thomas, K. Moore, D. M. Alongi, L. Trott & A. Davidson, 2000. Modelling and visualizing the fate of shrimp pond effluent in a mangrove-fringed tidal creek. Estuar. coast. shelf Sci. 50: 85-97.

    Google Scholar 

  • Velimerov, B. & M. Walenta-Simon, 1992. Seasonal changes in specific growth rates, production and biomass of a bacterial community in the water column above a Mediterranean seagrass system. Mar. Ecol. Prog. Ser. 80: 237.

    Google Scholar 

  • Ziegler, S. & R. Benner, 1999. Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Mar. Ecol. Prog. Ser. 180: 149-160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuford, W.D., Warnock, N., Molina, K.C. et al. The Salton Sea as critical habitat to migratory and resident waterbirds. Hydrobiologia 473, 255–274 (2002). https://doi.org/10.1023/A:1016566709096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016566709096

Navigation