Skip to main content

Advertisement

Log in

Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Nakamura (Q Rep Railway Tech Res Inst 30:25–33, 1989) popularized the application of the horizontal-to-vertical spectral ratio (HVSR) analysis of microtremor (seismic noise or ambient vibration) recordings to estimate the predominant frequency and amplification factor of earthquake shaking. During the following quarter century, popularity in the microtremor HVSR (MHVSR) method grew; studies have verified the stability of a site’s MHVSR response over time and validated the MHVSR response with that of earthquake HVSR response. Today, MHVSR analysis is a popular reconnaissance tool used worldwide for seismic microzonation and earthquake site characterization in numerous regions, specifically, in the mapping of site period or fundamental frequency and inverted for shear-wave velocity depth profiles, respectively. However, the ubiquity of MHVSR analysis is predominantly a consequence of its ease in application rather than our full understanding of its theory. We present the state of the art in MHVSR analyses in terms of the development of its theoretical basis, current state of practice, and we comment on its future for applications in earthquake site characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Castellaro (2016)

Fig. 2

Original figure appears in FJ Sánchez-Sesma (2017)

Fig. 3
Fig. 4
Fig. 5

(seismic section adapted from Pugin et al. 2013)

Similar content being viewed by others

References

  • Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst 35:415–456

    Google Scholar 

  • Albarello D, Lunedei E (2011) Structure of an ambient vibration wavefield in the frequency range of engineering interest ([0–5, 20] Hz): Insights from numerical modelling. Near Surface Geophys 9:543–559

    Google Scholar 

  • Albarello D, Lunedei E (2013) Combining horizontal ambient vibration components for H/V spectral ratio estimates. Geophys J Int 194(2):936–951

    Google Scholar 

  • Arai H, Tokimatsu K (1998) Evaluation of local site effects based on microtremor H/V spectra. In: Proceedings 2nd international symposium on the effects of surface geology on seismic motion, pp 673–680

  • Arai H, Tokimatsu K (2004) S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull Seis Soc Am 94:53–63

    Google Scholar 

  • Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am 95:1766–1778

    Google Scholar 

  • Asten M, Hayashi K (2018) Application of the spatial auto-correlation method for site effect evaluation using ambient noise. Surveys Geophys (submitted)

  • Aylsworth JM, Lawrence DE, Guertin J (2000) Did two massive earthquakes in the Holocene induce widespread landsliding and near-surface deformation in part of the Ottawa Valley, Canada? Geology 28:903–906

    Google Scholar 

  • Bard P-Y (1999) Microtremor measurements: a tool for site effect estimation? In: Proceedings, 2nd international symposium on the effects of surface geology on seismic motion, Yokohama, December 1998, pp 1251–1279

  • Bard P-Y, SESAME participants (2004) The SESAME project: an overview and main results. In: Proceedings, 13th World conference on earthquake engineering, Paper 2207

  • Benjumea B, Hunter JA, Burns RA, Good RL, Pullan SE (2001) Use of high-resolution shear-wave-reflection methods for determining earthquake fundamental site period response near Alfred, Ontario. Geol Surv Canada Current Research (Online) no. 2001-D3, 15 pp. https://doi.org/10.4095/212122

  • Benjumea B, Hunter JA, Aylsworth JM, Pullan SE (2003) Application of high-resolution seismic techniques in the evaluation of earthquake site response, Ottawa Valley, Canada. Tectonophysics 368:193–209. https://doi.org/10.1016/S0040-1951(03)00158-6

    Google Scholar 

  • Benjumea B, Hunter JA, Pullan SE, Brooks GR, Pyne M, Aylsworth JM (2008) Vs30 and fundamental site period estimates in soft sediments of the Ottawa Valley from near-surface geophysical measurements. J Environ Eng Geophys 13(4):313–323

    Google Scholar 

  • Benjumea B, Macau A, Gabas A, Bellmuntm F, Figueras S, Cires J (2011) Integrated geophysical profiles and H/V microtremor measurements for subsoil characterization. Near Surf Geophys 9:413–425. https://doi.org/10.3997/1873-0604.2011021

    Google Scholar 

  • Beroya MAA, Aydin A, Tilgo R, Lasala M (2009) Use of microtremor in liquefaction hazard mapping. Eng Geol 107:140–153

    Google Scholar 

  • Bonilla LF, Steidl JH, Lindley GT, Tumarkin AG, Archuleta RJ (1997) Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-wave, Coda, and H/V methods. Bull Seismol Soc Am 87:710–730

    Google Scholar 

  • Bonnefoy-Claudet S, Cotton F, Bard P-Y (2006) The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Sci Rev 79:205–227

    Google Scholar 

  • Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard P-Y (2008a) Effects of love waves on microtremor H/V ratio. Bull Seismol Soc Am 98:288–300

    Google Scholar 

  • Bonnefoy-Claudet S, Baize S, Bonilla LF, Berge-Thierry C, Pasten C, Campos J, Volant P, Verdugo R (2008b) Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2008.04020.x

    Google Scholar 

  • Bouchon M (2003) A review of the discrete wavenumber method. Pure Appl Geophys 160:445–465

    Google Scholar 

  • Bour M, Fouissac D, Dominique P, Martin C (1998) On the use of microtremor recordings in seismic microzonation. Soil Dyn Earthq Eng 17:465–474

    Google Scholar 

  • Castellaro S (2016) The complementarity of H/V and dispersion curves. Geophysics 81:T323–T338. https://doi.org/10.1190/geo2015-0399.1

    Google Scholar 

  • Castellaro S, Mulargia F (2009) The effect of velocity inversions on H/V. Pure Appl Geophys 166:567–592

    Google Scholar 

  • Castellaro S, Mulargia F (2010) How far from a building does the ground-motion free-field start? The cases of three famous towers and a modern building. Bull Seismol Soc Am 100:2080–2094

    Google Scholar 

  • Castellaro S, Mulargia F (2014) Simplified seismic soil classification: the VfZ matrix. Bull Earthq Eng 12:735–754

    Google Scholar 

  • Castellaro S, Panzeri R, Mesiti F, Bertello L (2015) A surface seismic approach to liquefaction. Soil Dyn Earthq Eng 77:35–46

    Google Scholar 

  • Chatelain J-L, Guillier B, Cara F et al (2008) Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull Earthq Eng 6:33–74

    Google Scholar 

  • Chiauzzi L, Cassidy JF, Kutyn K, Masi A, Mucciarelli M, Traber J, Ventura C, Yao F (2012) Estimate of the fundamental period of reinforced concrete buildings: code provisions vs experimental measures in Victoria and Vancouver (BC, Canada). In: Proceedings 15th World conference on earthquake engineering, Paper 3033, p. 10

  • Chiou B, Darragh R, Gregor N, Silva W (2008) NGA project strong-motion database. Earthq Spectra 24:23–44

    Google Scholar 

  • Claerbout J (1968) Synthesis of a layered medium from its acoustic transmission response. Geophysics 33:264–269

    Google Scholar 

  • Crow HL, Hunter JA, Motazedian D (2011) Monofrequency insitu damping measurements in Ottawa area soft soils. Soil Dyn Earthq Eng 31:1669–1677

    Google Scholar 

  • Dobry R, Oweis I, Urzua A (1976) Simplified procedures for estimating the fundamental period of a soil profile. Bull Seismol Soc Am 66:1293–1321

    Google Scholar 

  • Endrun B (2011) Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements. J Seismol 15:443–472

    Google Scholar 

  • Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145:535–549

    Google Scholar 

  • Fäh D, Kind F, Giardini D (2003) Inversion of local S-wave velocity structures from average H/V ratios and their use for the estimation of site effects. J Seis 7:449–467

    Google Scholar 

  • Field E, Jacob K (1993) The theoretical response of sedimentary layers to ambient seismic noise. Geophys Res Lett 20:2925–2928

    Google Scholar 

  • Foti S, Parolai S, Bergamo P, Di Giulio G, Maraschini M, Milana G, Picozzi M, Puglia R (2011a) Surface wave surveys for seismic site characterization of accelerometric stations in ITACA. Bull Earthq Eng 9:1797–1820

    Google Scholar 

  • Foti S, Parolai S, Albarello D, Picozzi M (2011b) Application of surface-wave methods for seismic site characterization. Surv Geophys 32:777–825

    Google Scholar 

  • Foti S, Hollender F, Garofalo F, Albarello D, Asten M, Bard P-Y, Comina C, Cornou C, Cox B, Di Giulio G, Forbriger T, Hayashi K, Lunedei E, Martin A, Mercerat D, Ohrnberger M, Poggi V, Renalier F, Sicilia D, Socco V (2017) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bull Earthq Eng. https://doi.org/10.1007/s10518-017-0206-7

    Google Scholar 

  • García-Jerez A, Luzón F, Sánchez-Sesma FJ, Lunedei E, Albarello D, Santoyo MA, Almendros J (2013) Diffuse elastic wavefield within a simple crustal model: some consequences for low and high frequencies. J Geophys Res Solid Earth 118:5577–5595

    Google Scholar 

  • García-Jerez A, Piña-Flores J, Sánchez-Sesma FJ, Luzón F, Perton M (2016) A computer code for forward computation and inversion of the H/V spectral ratio under the diffuse field assumption. Comput Geosci 97:67–78

    Google Scholar 

  • Ghofrani H, Atkinson G (2014) Site condition evaluation using horizontal-to-vertical response spectral ratios of earthquakes in the NGA-West2 and Japanese databases. Soil Dyn Earthq Eng 67:30–43

    Google Scholar 

  • Gorstein M, Ezersky M (2015) Combination of HVSR and MASW methods to obtain shear wave velocity model of subsurface in Israel. Int J Geohazards Environ 1(1):20–41. https://doi.org/10.15273/ijge.2015.01.004

    Google Scholar 

  • Gosar A, Lenart A (2010) Mapping the thickness of sediments in the Ljubljana Moor basin (Slovenia) using microtremors. Bull Earthq Eng 8:501–518. https://doi.org/10.1007/s10518-009-9115-8

    Google Scholar 

  • Guéguen P, Cornou C, Garambois S, Banton J (2007) On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: application to the Grenoble valley (France), a small apex ratio basin. Pure Appl Geophys 164:115–134

    Google Scholar 

  • Guillier B, Atakan K, Chatelain J-L et al (2007) Influence of instruments on the H/V spectral ratios of ambient vibrations. Bull Earthq Eng. https://doi.org/10.1007/s10518-007-9039-0

    Google Scholar 

  • Guillier B, Chatelain J-L, Tavera H, Perfettini H, Ochoa A, Herrera B (2014) Establishing empirical period formula for RC buildings in Lima, Peru: evidence for the impact of both the 1974 Lima earthquake and the application of the peruvian seismic code on high-rise buildings. Seismol Res Lett 85(6):1308–1315

    Google Scholar 

  • Hadijan AH (2002) Fundamental period and mode shape of layered soil profiles. Soil Dyn Earthq Eng 22:885–891

    Google Scholar 

  • Haghshenas E, Bard P-Y, Theodulidis N, SESAME WP04 Team (2008) Empirical evaluation of microtremor H/V spectral ratio. Bull Earthq Eng 6:75–108

    Google Scholar 

  • Haskell NA (1960) Crustal reflection of plane SH waves. J Geophys Res 65:4147–4150

    Google Scholar 

  • Herak M (2008) ModelHVSR: a Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Comput Geosci 34:1514–1526

    Google Scholar 

  • Hinzen K-G, Weber B, Scherbaum F (2004) On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany. J Earthq Eng 8:909–926

    Google Scholar 

  • Hobiger M, Bard P-Y, Cornou C, Le Bihan N (2009) Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys Res Lett 36:L14303. https://doi.org/10.1029/2009GL038863

    Google Scholar 

  • Hobiger M, Cornou C, Wathelet M et al (2013) Ground structure imaging by inversions of Rayleigh wave ellipticity: sensitivity analysis and application to European strong-motion sites. Geophys J Int 192:207–229

    Google Scholar 

  • Hunter JA, Crow HL (eds) (2012) Shear wave velocity measurement guidelines for Canadian seismic site characterization in soil and rock. Geol Surv of Canada, Open File 7078, p. 227 https://doi.org/10.4095/291753

  • Hunter JA, Crow HL, Brooks GR et al (2010a) Seismic site classification and site period mapping in the Ottawa area using geophysical methods. Geol Surv Canada Open File 6273, 80 p; 1 DVD. https://doi.org/10.4095/286323

  • Hunter JA, Burns RA, Good RL, Pullan SE, Pugin AJM, Crow H (2010b) Near-surface geophysical techniques for geohazards investigations: some Canadian examples. Lead Edge 29(8):936–947. https://doi.org/10.1190/1.3480011

    Google Scholar 

  • Ibrahim K, Mohamed AEA, Babiker IS, Elmula AHG (2015) Local site effects evaluation for Atbara area using microtremor measurements. Am J Earth Sci 2:134–141

    Google Scholar 

  • Ibs-von Seht M, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seismol Soc Am 89:250–259

    Google Scholar 

  • Joyner WB, Warrick RE, Fumal TE (1981) The effect of Quaternary alluvium on strong ground motion in the Coyote Lake, California, earthquake of 1979. Bull Seismol Soc Am 71:1333–1349

    Google Scholar 

  • Kamarudin AH, Daud ME, Ibrahim Z, Ibrahim A (2016) Sustainable non-destructive technique ambient vibrations for ground assessments. Proc Soc Behav Sci 216:701–711

    Google Scholar 

  • Kanai K, Tanaka T (1961) On Microtremor VIII. Bull Earthq Res Inst 39:97–114

    Google Scholar 

  • Kawase H, Sánchez-Sesma FJ, Matsushima S (2011) Application of the H/V spectral ratios for earthquake and microtremor ground motions. In: Proceedings 4th IASPEI/IAEE international symposium, effects of surface geology on seismic motion, University of California Santa Barbara

  • Kawase H, Matsushima S, Satoh T, Sánchez-Sesma FJ (2015) Applicability of theoretical horizontal-to-vertical ratio of microtremors based on the diffuse field concept to previously observed data. Bull Seismol Soc Am 106:3092–3103. https://doi.org/10.1785/0120150134

    Google Scholar 

  • Köhler A, Ohrnberger M, Scherbaum F, Wathelet M, Cornou C (2007) Assessing the reliability of the modified threecomponent spatial autocorrelation technique. Geophys J Int 168:779–796

    Google Scholar 

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seis Soc Am 88:228–241

    Google Scholar 

  • Lachet C, Bard P-Y (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Phys Earth 42:377–397

    Google Scholar 

  • Le Roux O, Cornou C, Jongmans D, Schwartz S (2012) 1-D and 2-D resonances in an Alpine valley identified from ambient noise measurements and 3-D modelling. Geophys J Int 191:579–590

    Google Scholar 

  • Lermo J, Chavez-Garcia FJ (1994) Are microtremors useful in site response evaluation? Bull Seismol Soc Am 84:1350–1364

    Google Scholar 

  • Lévêque J-L, Maggi A, Souriau A (2010) Seismological constraints on ice properties at Dome C, Antarctica, from horizontal to vertical spectral ratios. Antarct Sci 22:572–579

    Google Scholar 

  • Lontsi AM, Sánchez-Sesma FJ, Molina-Villegas JC, Ohrnberger M, Kruger F (2015) Full microtremor H/V(z, f) inversion for shallow subsurface characterization. Geophys J Int 202:298–312

    Google Scholar 

  • Lunedei E, Albarello D (2015) Horizontal-to-vertical spectral ratios from a full-wavefield model of ambient vibrations generated by a distribution of spatially correlated surface sources. Geophys J Int 201:1140–1153

    Google Scholar 

  • Macau A, Benjumea B, Gabas A, Figueras S, Vila M (2015) The effect of shallow Quaternary deposits on the shape of the H/V spectral ratio. Surv Geophys 35:185–208

    Google Scholar 

  • Malischewsky PG, Scherbaum F (2004) Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion 40:57–67

    Google Scholar 

  • Maranò S, Reller C, Loeliger H-A, Fäh D (2012) Seismic waves estimation and wavefield decomposition: application to ambient vibrations. Geophys J Int 191:175–188

    Google Scholar 

  • Margerin L (2009) Generalized eigenfunctions of layered elastic media and application to diffuse fields. J Acoust Soc Am 125:164–174

    Google Scholar 

  • Matsushima S, Hirokawa T, De Martin F, Kawase H, Sánchez-Sesma FJ (2014) The effect of lateral heterogeneity on horizontal-to-vertical spectral ratio of microtremors inferred from observation and synthetics. Bull Seismol Soc Am 104:381–393. https://doi.org/10.1785/0120120321

    Google Scholar 

  • Michel C, Guéguen P, Lestuzzi P, Bard P-Y (2010) Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France. Bull Earthq Eng 8:1295–1307

    Google Scholar 

  • Mohamed AA, Helal AMA, Mohamed AME, Shokry MMF, Ezzelarab M (2015) Effects of surface geology on the ground-motion at New Borg El-Arab City, Alexandria, Northern Egypt. NRIAG J Astro Geophys 5:55–64. https://doi.org/10.1016/j.nrjag.2015.11.005

    Google Scholar 

  • Molnar S, Cassidy JF (2006) A comparison of site response techniques using weak-motion earthquakes and microtremors. Earthq Spectra 22:169–188

    Google Scholar 

  • Motazedian D, Hunter JA, Pugin AJM, Crow H (2011a) Development of a Vs30 (NEHRP) map for the city of Ottawa, Ontario, Canada. Can Geotech J 48:458–472

    Google Scholar 

  • Motazedian D, Khaheshi Banab K, Hunter JA, Sivathayalan S, Crow H, Brooks G (2011b) Comparison of site periods derived from different evaluation methods. Bull Seismol Soc Am 101(6):2942–2954. https://doi.org/10.1785/0120100344

    Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface. Q Rep Railway Tech Res Inst 30:25–33

    Google Scholar 

  • Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor (part 2). J Seismol Soc Japan 24:26–40

    Google Scholar 

  • Okada H (2003) The microtremor survey method, Geophysical Monograph Series Number 12: Soc Expl Geophys, 135 p

  • Oliveira CS, Navarro M (2010) Fundamental periods of vibration of RC buildings in Portugal from in situ experimental and numerical techniques. Bull Earthq Eng 8:609–642

    Google Scholar 

  • Oubaiche EH, Chatelain J-L, Bouguern A, Bensalem R, Machane D, Hellel M, Khaldaoui F, Guillier B (2012) Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast. Seismol Res Lett 83:1038–1046

    Google Scholar 

  • Özalaybey S, Zor E, Ergintav S, Tapırdamaz MC (2011) Investigation of 3-D basin structures in the Izmit Bay area (Turkey) by single-station microtremor and gravimetric methods. Geophys J Int 186:883–894

    Google Scholar 

  • Parolai S, Galiana-Merino JJ (2006) Effect of transient seismic noise on estimates of H/V spectral ratios. Bull Seis Soc Am 96:228–236

    Google Scholar 

  • Parolai S, Bormann P, Milkereit C (2002) New relationships between V S, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologne area (Germany). Bull Seismol Soc Am 92:2521–2527

    Google Scholar 

  • Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32:L01303

    Google Scholar 

  • Pastén C, Sáez M, Ruiz S, Leyton F, Salomón J, Poli P (2016) Deep characterization of the Santiago Basin using HVSR and cross-correlation of ambient seismic noise. Eng Geol 201:57–66. https://doi.org/10.1016/j.enggeo.2015.12.021

    Google Scholar 

  • Picozzi M, Parolai S, Albarello D (2005) Statistical analysis of noise horizontal-to-vertical spectral ratios (HVSR). Bull Seismol Soc Am 95:1779–1786

    Google Scholar 

  • Picozzi M, Strollo A, Parolai S, Durukal E, Özel O, Karabulut S, Zschau J, Erdik M (2009) Site characterization by seismic noise in Istanbul, Turkey. Soil Dyn Earthq Eng 29:469–482

    Google Scholar 

  • Pilz M, Parolai S, Leyton F, Campos J, Zschau J (2009) A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile. Geophys J Int 178:713–728. https://doi.org/10.1111/j.1365-246X.2009.04195.x

    Google Scholar 

  • Piña-Flores J, Perton M, García-Jerez A, Carmona E, Luzón F, Molina-Villegas JC, Sánchez-Sesma FJ (2017) The inversion of spectral ratio H/V in a layered system using the diffuse field assumption (DFA). Geophys J Int 208:577–588

    Google Scholar 

  • Poggi V, Fäh D (2010) Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations. Geophys J Int 180:251–267

    Google Scholar 

  • Poggi V, Fäh D, Burjanek J, Giardini D (2012) The use of Rayleigh wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland. Geophys J Int 188:1154–1172

    Google Scholar 

  • Pugin AJM, Brewer K, Cartwright T, Pullan SE, Perret D, Crow HL, Hunter JA (2013) Near surface S-wave seismic reflection profiling—new approaches and insights. First Break EAGE 31:49–60. https://doi.org/10.3997/1365-2397.2013005

    Google Scholar 

  • Rošer J, Gosar A (2010) Determination of VS30 for seismic ground classification in the Ljubjana area, Slovenia. Acta Geotech Slov 1:61–76

    Google Scholar 

  • Roten D, Fäh D, Cornou C, Giardini D (2006) Two-dimensional resonances in Alpine valleys identified from ambient vibration wavefields. Geophys J Int 165:889–905

    Google Scholar 

  • Salameh C, Guillier B, Harb J, Cornou C, Bard P-Y, Voisin C, Mariscal A (2016) Seismic response of Beirut (Lebanon) buildings: instrumental results from ambient vibrations. Bull Earthq Eng. https://doi.org/10.1007/s10518-016-9920-9

    Google Scholar 

  • Sánchez-Sesma FJ (2017) Modeling and inversion of the microtremor H/V spectral ratio: physical basis behind the diffuse field approach. Earth Planets Space 69:92

    Google Scholar 

  • Sánchez-Sesma FJ, Rodríguez M, Iturrarán-Viveros U, Luzón F, Campillo M, Margerin L, García-Jerez A, Suárez M, Santoyo MA, Rodríguez-Castellanos A (2011) A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys J Int 186(1):221–225

    Google Scholar 

  • SESAME et al. (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing, and interpretation. SESAME European research project, WP12—Deliverable D23.12

  • Seyhan E, Stewart JP, Ancheta TD, Darragh RB, Graves RW (2014) NGA-West 2 site database. Earthq Spectra 30:1007–1024

    Google Scholar 

  • Socco LV, Strobbia C (2004) Surface wave methods for near-surface characterization: a tutorial. Near Surf Geophys 2:165–185

    Google Scholar 

  • Tuan TT, Scherbaum F, Malischewsky PG (2011) On the relationship of peaks and troughs of ellipticity (H/V) of Rayleigh waves and the transmission response of single layer over half-space models. Geophys J Int 184:793–800

    Google Scholar 

  • Uebayashi H (2003) Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors. Bull Seismol Soc Am 93:570–582

    Google Scholar 

  • Uebayashi H, Kawabe H, Kamae K (2012) Reproduction of microseism H/V spectral features using a three-dimensional complex topographical model of the sediment-bedrock interface in the Osaka sedimentary basin. Geophys J Int 189:1060–1074. https://doi.org/10.1111/j.1365-246X.2012.05408.x

    Google Scholar 

  • Van der Baan M (2009) The origin of SH-wave resonance frequencies in sedimentary layers. Geophys J Int 178:1587–1596

    Google Scholar 

  • Woolery EW, Street R (2002) 3D near-surface soil response from H/V ambient-noise ratios. Soil Dyn Earthq Eng 22:865–876

    Google Scholar 

  • Yamamoto H (2000) Estimation of shallow S-wave velocity structures from phase velocities of Love-and Rayleigh-waves in microtremors. In: Proceedings of the 12th World conference on earthquake engineering

  • Yañez G, Muñoz M, Flores-Aqueveque V, Bosch A (2015) Gravity derived depth to basement in Santiago Basin, Chile: implications for its geological evolution, hydrogeology, low enthalpy geothermal, soil characterization and geo-hazards. Andean Geol 42:190–212

    Google Scholar 

  • Yong A, Martin A, Stokoe K, Diehl J (2013) ARRA-funded VS30 measurements using multi-technique approach at strong-motion stations in California and central-eastern United States: U.S. Geological Survey Open-File Report 2013–1102, 60p. and data files http://pubs.usgs.gov/of/2013/1102

  • Zor E, Özalaybey S, Karaaslan A, Tapırdamaz MC, Özalaybey SÇ, Tarancıoglu A, Erkan B (2010) Shear wave velocity structure of the Izmit Bay area (Turkey) estimated from active–passive array surface wave and single-station microtremor methods. Geophys J Int 182:1603–1618

    Google Scholar 

Download references

Acknowledgements

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) Facilitation Committee for the Development of the COSMOS International Guidelines for the Application of Noninvasive Geophysical Techniques to Characterize Seismic Site Conditions. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. Thanks are given to J. Piña-Flores for his comments and suggestions and to G. Sánchez, E. Plata, and their team of the Unidad de Servicios de Información (USI) of the Institute of Engineering-UNAM for locating useful references. Partial support by AXA Research Fund, by DGAPA-UNAM under Project IN100917 is gratefully acknowledged. Natural Resources Canada (Geological Survey of Canada) gratefully acknowledges the contributions of Dr. André Pugin in the processing of the seismic section produced herein, and the support of the Public Safety Geoscience and Groundwater Geoscience Programs. This is ESS Contribution number 20170132. This paper was improved from U.S. Geological Survey reviews by Drs. Stephen Hartzell and William Stephenson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Molnar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molnar, S., Cassidy, J.F., Castellaro, S. et al. Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art. Surv Geophys 39, 613–631 (2018). https://doi.org/10.1007/s10712-018-9464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9464-4

Keywords

Navigation