Skip to main content
Log in

Changes on the nanostructure of cementitius calcium silicate hydrates (C–S–H) induced by aqueous carbonation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nanostructure of the main binding phase of the hydrated cements, the calcium silicate hydrates (C–S–H), and their structural changes due to aqueous carbonation have been characterized using TEM, nitrogen physisorption, and SAXS. Synthetic C–S–H has been used for this purpose. Two different morphologies were identified, similar to the high density and low density C–S–H types. When submitting the sample to a CO2 flux, the low density phase was completely carbonated. The carbonation by-products, calcium carbonate, and silica gel were also identified and characterized. The precipitation of the silica gel increased the specific surface area from 95 to 132 m2/g, and its structure, formed by particles of ~5 nm typical radius, was observed by small angle X-ray scattering. In addition, the resistance of the high density C–S–H to carbonation is reported, and the passivating effect of the precipitated calcium carbonate is also discussed. Finally, the results have been compared with carbonation features observed in Portland cement carbonated experimentally at downhole conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We use the cement notation: C=Ca0, S=SiO2, and H=H2O. In the C–S–H notation, the hyphenation indicates variable composition.

  2. We use the term "microcrystals" to design crystals with a size around hundreds of nanometers, to mark the difference with the previously defined embedded tobermorite “nanocrystals”.

References

  1. Taylor HFW (1997) Cement chemistry. Thomas Telford Publishing, London

    Book  Google Scholar 

  2. Barlet-Gouédard V, Rimmelé G, Porcherie O, Quisel N, Desroches J (2009) Int J Greenh Gas Control 3:206. doi:10.1016/j.ijggc.2008.07.005

    Article  Google Scholar 

  3. Jaramillo P, Griffin WM, MCCoy ST (2009) Environ Sci Technol 43:8027. doi:10.1021/es902006h

    Article  CAS  Google Scholar 

  4. Rimmelé G, Varlet-Gouédard V, Porcherie O, Goffé B, Brunet F (2008) Cem Concr Res 38:1038. doi:10.1016/j.cemconres.2008.03.022

    Article  Google Scholar 

  5. GRASP project (http://www.grasp-co2.eu) or CO2Sink project (http://www.co2sink.org), September 5, 2010

  6. Corvisier J, Brunet F, Fabbri A, Bernard S, Findling N, Rimmelé G, Barlet-Gouédard V, Beyssac O, Goffé B (2010) Eur J Mineral 22:63. doi:10.1127/0935-1221/2010/0022-1977

    Article  CAS  Google Scholar 

  7. Scherer GW (1999) Cem Concr Res 29:1149

    Article  CAS  Google Scholar 

  8. Feldman RF, Sereda PJ (1970) Eng J Can 53:53

    Google Scholar 

  9. Jennings HM (2000) Cem Concr Res 30:101

    Article  CAS  Google Scholar 

  10. Jennings HM (2008) Cem Concr Res 38:275

    Article  CAS  Google Scholar 

  11. Richardson IG (2004) Cem Concr Res 34:1733. doi:10.1016/j.cemconres.2004.05.034

    Article  CAS  Google Scholar 

  12. Frattini E, Chen SH, Baglioni P, Bellissent-Funel MC (2001) Phys Rev E 64:020201

    Article  Google Scholar 

  13. Popova A, Geoffroy G, Gartner EM, Lapp A (2002) J Am Ceram Soc 85:1303. doi:10.1111/j.1151-2916.2002.tb00264.x

    Article  CAS  Google Scholar 

  14. Morales-Flórez V, Brunet F (2009) Mol Simul 35:1001. doi:10.1080/08927020903033117

    Article  Google Scholar 

  15. Lloyd RR, Provis JL, Van Deventer JSJ (2009) J Mater Sci 44:620. doi:10.1007/s20853-008-3078-z

    Article  CAS  Google Scholar 

  16. Mazumder S, Sen D, Bahadur J, Klepp J, Rauch H, Teixeira J (2010) Phys Rev B 82:064203. doi:10.1103/PhysRevB.82.064203

    Article  Google Scholar 

  17. Thomas JJ, Jennings HM, Allen AJ (1998) Cem Concr Res 28:897. doi:10.1016/S0008-8846(98)00049-0

    Article  CAS  Google Scholar 

  18. Allen AJ, Thomas JJ, Jennings HM (2007) Nat Mater 6:311. doi:10.1038/nmat1871

    Article  CAS  Google Scholar 

  19. Blinc R, Lahajnar G, Zummer S (1988) Phys Rev B 38:2873

    Article  Google Scholar 

  20. Thomas JJ, Allen AJ, Jennings HM (2008) J Am Ceram Soc 91:3362

    Article  CAS  Google Scholar 

  21. Skinner LB, Chae SR, Benmore CJ, Wenk HR, Monteiro PJM (2010) Phys Rev Lett 104:195502. doi:10.1103/PhysRevLett.104.195502

    Article  CAS  Google Scholar 

  22. Manzano H, Ayuela A, Dolado JS (2007) J Comput-Aided Mater Des 14:45. doi:10.1007/s10820-006-9030-0

    Article  CAS  Google Scholar 

  23. Gonzalez-Teresa R, Morales-Florez V, Manzano H, Dolado JS (2010) Mater Constr 60:7. doi:10.3989/mc.2010.57010

    Article  CAS  Google Scholar 

  24. Häussler F, Palzer S, Eckart A, Hoell A (2002) Appl Phys A 74:S1124. doi:10.1007/s003390101202

    Article  Google Scholar 

  25. Johannesson B, Utgennant P (2001) Cem Concr Res 31:925

    Article  CAS  Google Scholar 

  26. Sugiyama D, Fujita T (2006) Cem Concr Res 36:227

    Article  CAS  Google Scholar 

  27. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  28. Barret EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  Google Scholar 

  29. ImageJ 1.40g, By Wayne Rasband. National Institute of Health, USA. http://rsb.info.nih.gov/ij, September 2010

  30. Sing KSW, Everett DH, Haul R, Moscou L, Pierotti RA, Rouquérol J, Siemeniewska T (1985) Pure Appl Chem 57:603. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  31. Zhang X, Chang W, Zhang T, Ong CK (2000) J Am Ceram Soc 83:2600

    Article  CAS  Google Scholar 

  32. Viehland D, Li JF, Yuan LJ, Xu Z (1996) J Am Ceram Soc 79:1731

    Article  CAS  Google Scholar 

  33. Xu Z, Viehland D (1996) Phys Rev Lett 77:952. doi:10.1103/PhysRevLett.77.952

    Article  CAS  Google Scholar 

  34. American Mineralogist Crystal Structure Database. http://rruff.info, December 2010

  35. Black L, Garbev K, Gee I (2008) Cem Concr Res 38:745

    Article  CAS  Google Scholar 

  36. Siauciunas R, Rupsyté E, Kitrys S, Galeckas V (2004) Colloid Surf A 244:197

    Article  CAS  Google Scholar 

  37. Béarat H, McKelvy MJ, Chizmeshya AV, Gormley D, Nunez R, Carpenter RW, Squires K (2006) Environ Sci Technol 40:4802. doi:10.1021/es0523340

    Article  Google Scholar 

  38. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic Press, London

    Google Scholar 

  39. Allen AJ, Thomas JT (2007) Cem Concr Res 37:319. doi:10.1016/j.cemconres.2006.09.002

    Article  CAS  Google Scholar 

  40. Debye P, Bueche AM (1949) J Appl Phys 20:518

    Article  CAS  Google Scholar 

  41. Longman GW, Wignall GD, Hemming M, Dawkins JV (1974) Colloid Polym Sci 252:298

    Article  CAS  Google Scholar 

  42. De la Rosa-Fox N, Morales-Flórez V, Toledo-Fernández JA, Piñero M, Esquivias L, Keiderling U (2008) J Sol-Gel Sci Technol 45:245. doi:10.1007/s10971-008-1686-3

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the ESRF for provision of the synchrotron radiation facilities, and would like to especially thank Dr. F. Fauth for his assistance in using the beamline BM16. We also acknowledge the technical services of the Instituto de Ciencia de Materiales de Sevilla (CSIC-US) for its help with characterization measurements. This study was funded by the European Union through a Marie Curie grant within the GRASP project MRTN-CT-2006-035868. Finally, we would like to thank Dr. J. N. Rouzaud for his help with the TEM micrographies, Mr. Yves Pinquier with his help with the teflon reactor, and Dr. Nicolas de la Rosa-Fox for discussion and his wise ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Morales-Florez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Florez, V., Findling, N. & Brunet, F. Changes on the nanostructure of cementitius calcium silicate hydrates (C–S–H) induced by aqueous carbonation. J Mater Sci 47, 764–771 (2012). https://doi.org/10.1007/s10853-011-5852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5852-6

Keywords

Navigation