Skip to main content
Log in

Chemical descriptors for describing physico-chemical properties with applications to geosciences

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Chemical descriptors using DFT concepts characterize elements reactivity. Such descriptors, namely hardness and electrophilicity, are components of the derivative of the chemical potential. Their values form a new coordinates system, on which a third parameter can be mapped. The simplest mapping is the chemical potential itself, but other mapping may involve totally different chemical or physical parameters. Examples use rock analyses generated within the continental or oceanic crust of the Earth. They are usually described in an 11D system of major oxides. The new system of coordinates reduces the description to a more easily tractable 2D diagram. It also represents a base for plotting other chemical information, such as the normative component composition or a combination of them. Physically, other properties, such as the polymerization state or viscosity values, can be used to produce a 3D topography. Other topographic surfaces similar to the chemical potential of elements can be mapped, allowing quantification of partition coefficient values when elements fractionate in both liquid or viscous states. The reduction of an 11D diagram to a 2D one is suggested in other scientific descriptions of complex combinations.

[ω-η] diagrams showing the chemical potential and the different continental and oceanic rock typesthen ading some chemical (Aluminium Saturation Index) parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  2. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  3. Chattaraj PK, Lee H, Parr RG (1991) HSAB principles. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  4. Pearson RG (2009) The hardness of closed systems. In: Chattaraj PK (ed) Chemical reactivity theory: a density functional view. CRC, Boca Raton, pp 155–163

    Google Scholar 

  5. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  6. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  7. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  PubMed  Google Scholar 

  8. Chattaraj PK, Maiti B (2004) Regioselectivity in the chemical reactions between molecules and protons: a quantum fluid density functional study. J Phys Chem A 10:658–664

    Article  CAS  Google Scholar 

  9. Vigneresse JL, Duley S, Chattaraj PK (2011) Describing the chemical character of a magma. Chem Geol 287:102–113

    Article  CAS  Google Scholar 

  10. Vigneresse JL (2012) Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation. Lithos 153:154–164

    Article  CAS  Google Scholar 

  11. McBirney AR (1993) Igneous petrology. Jones and Bartlett, Boston, p 572

  12. Pearce JA, Harris NBW, Tindle AW (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  CAS  Google Scholar 

  13. Chayes F (1971) Ratio correlation a manual for students of petrology and geochemistry. Univ Chicago Press, Chicago, p 99

    Google Scholar 

  14. Pauling L (1932) The nature of the chemical bonds. IV The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  15. Chattaraj PK, Giri S, Duley S (2012) Update 2 of: Electrophilicity index. Chem Rev 111:PR43–PR75

    Google Scholar 

  16. Ghanty TK, Gosh SK (1996) A density functional approach to hardness, polarizability, and valency of molecules in chemical reactions. J Phys Chem 100:12295–12298

    Article  CAS  Google Scholar 

  17. Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J PhysChem A109:205–212

    Google Scholar 

  18. Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108:4315–4320

    Article  CAS  Google Scholar 

  19. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854

    Article  CAS  Google Scholar 

  20. Chattaraj PK (1996) The maximum hardness principle: an overview. Proc Indian Nat Sci Acad A62:513–531

    Google Scholar 

  21. Pan S, Sola M, Chattaraj PK (2013) On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J Phys Chem A 117:1843–1852

    Article  CAS  PubMed  Google Scholar 

  22. Noorizadeh S, Shakerzadeh E (2008) A new scale of electronegativity based on electrophilicity index. J Phys Chem A 112:3486–3491

    Article  CAS  PubMed  Google Scholar 

  23. Morel C, Labet V, Grand A, Chermette H (2009) Minimum electrophilicity principle: an analysis based upon the variation of both chemical potential and absolute hardness. Phys Chem Chem Phys. 14:3417–3423

    Article  CAS  Google Scholar 

  24. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2001) On the validity of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. J Am Chem Soc 123:7951–7952

    Article  CAS  PubMed  Google Scholar 

  25. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution proc. Sixth Ann Congr Genetics 1:356–366

    Google Scholar 

  26. Kauffman SA (1995) At home in the universe: the search for Laws of self-organization and complexity. Oxford University Press, New York 321 pp

    Google Scholar 

  27. Duley S, Vigneresse JL, Chattaraj PK (2012) Fitness landscapes in natural rocks system evolution: a conceptual DFT treatment. J Chem Sci 124:29–34

    Article  CAS  Google Scholar 

  28. Das R, Vigneresse JL, Chattaraj PK (2014) Redox and Lewis acid–base activities through an electronegativity-hardness landscape diagram. J Mol Model 19:4857–4864

    Article  Google Scholar 

  29. Mysen BO, Richet P (2005) Silicate glasses and melts. Elsevier, Amsterdam, p 544

    Google Scholar 

  30. petDB http://wwwpetdborg, http://earthreforg

  31. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Scientific and Technical, Harlow, p 352

  32. Stacey FD, Banerjee SK (1974) The physical principles of rock magnetism. Elsevier, Amsterdam, p 204

  33. Jugo PJ, Luth R, Richards J (2005) Experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 °C and 10 GPa. J Petrol 46:783–798

    Article  CAS  Google Scholar 

  34. Jégo S, Dasgupta R (2014) The fate of sulfur during fluid-present melting of subducting basaltic crust at variable oxygen fugacity. J Petrol 55:1019–1050

    Article  CAS  Google Scholar 

  35. Ishihara S (2004) The redox state of granitoids relative to tectonic setting and earth history: the magnetite–ilmenite series 30 years later. Trans R Soc Edinb Earth Sc 95:23–33

    Article  CAS  Google Scholar 

  36. Ottonello G, Moretti R, Marini L, Vetuschi Zuccolini M (2001) Oxidation state of iron in silicate glasses and melts: a thermochemical model. Chem Geol 17:157–179

    Article  Google Scholar 

  37. Candela PA (1989) Felsic magmas, volatiles, and metallogenesis. In: Whitney JA, Naldrett AJ (eds) Ore deposition associated with magmas. Rev Econ Geol 4:223–233

  38. Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Article  CAS  Google Scholar 

  39. Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Min Geochem 72:311–408

    Article  CAS  Google Scholar 

  40. Bodnar RJ (1995) Fluid-inclusion evidence for a magmatic source of metals in porphyry copper deposits. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Mineral Ass. Canada Short Course Series 23:139–52

  41. Frezzotti ML (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55:273–299

    Article  CAS  Google Scholar 

  42. Kamenetsky VS, Kamenestsky MB (2010) Magmatic fluids immiscible with silicate melts: examples from inclusions in phenocrysts and glasses, and implications for magma evolution and metal transport. Geofluids 10:293–311

    CAS  Google Scholar 

  43. Li Y, Audétat A (2012) Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulphide phases and hydrous basanite melt at upper mantle conditions. Geochim Cosmochim Acta 75:1673–1692

    Google Scholar 

  44. Zajacz Z, Candela PA, Piccoli PC, Sanchez-Valle C, Wälle M (2013) Solubility and partitioning behavior of Au, Cu, Ag and reduced S in magmas. Geochim Cosmochim Acta 112:288–304

    Article  CAS  Google Scholar 

  45. Ghosh DC, Chakraborty T (2009) Gordy’s electrostatic scale of electronegativity revisited. J Mol Struct THEOCHEM 906:87–93

    Article  CAS  Google Scholar 

  46. Atlan H (1989) Automata networks in immunology : their utility and their underdetermination. Bull Math Biol 54:247–253

    Article  Google Scholar 

  47. Berg JM (2015) Biochemistry, W.H. Freeman, 1232 pp.

  48. Atlan H (2018) Cours de Philosophie Biologiste et Cognitive. Odile Jacob (ed.), Paris, p 637

Download references

Acknowledgments

The paper came out after a stay at the Department of Chemistry, IIT Kharagpur, India, with granting by the CTS (Center for Theoretical Studies). It allowed fruitful introduction to DFT concepts and collaboration with Pratim K. Chattaraj and his students. Discussions with Christophe Morell (Université de Lyon1) encouraged me to formulate what is now this paper. Constructive reviews with comments are also warmly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Vigneresse.

Ethics declarations

Confict of interest

There is no conflict of interest.

Additional information

This paper belongs to Topical Collection International Conference on Systems and Processes in Physics, Chemistry and Biology (ICSPPCB-2018) in honor of Professor Pratim K. Chattaraj on his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneresse, JL., Truche, L. Chemical descriptors for describing physico-chemical properties with applications to geosciences. J Mol Model 24, 231 (2018). https://doi.org/10.1007/s00894-018-3770-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3770-0

Keywords

Navigation