Skip to main content
Log in

Determining Fault Geometries From Surface Displacements

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We introduce a new algorithm for determining the geometry of active parts of faults. This algorithm uses surface measurements of displacement fields and local modeling of the Earth’s crust as a half-space elastic medium. The numerical method relies on iterations alternating non-linear steps for recovering the geometry and linear steps for reconstructing slip fields. Our algorithm greatly improves upon past attempts at reconstructing fault profiles. We argue that these past attempts suffered from either the restrictive assumption that the geometry of faults can be derived using only uniformly constant slips or that they relied on arbitrary assumptions on the statistics of the reconstruction error. We test this algorithm on the 2006 Guerrero, Mexico, slow slip event (SSE) and on the 2009 SSE for the same region. These events occurred on a relatively well-known subduction zone, whose geometry was derived from seismicity and gravimetric techniques, see Kostoglodov et al. (Geophys Res Lett 23(23):3385–3388, 1996), Pardo and Suarez (J Geophys Res 100(B7):357–373, 1995), Singh and Pardo (Geophys Res Lett 20(14):1483–1486, 1993), so our results can be compared to known benchmarks. Our derived geometry is found to be consistent with these benchmarks regarding dip and strike angles and the positioning of the North American Trench. In addition, our derived slip distribution is also consistent with previous studies (all done with an assumed fixed geometry), see Larson et al. (Geophys Res Lett 34(13), 2007), Bekaert et al. (J Geophys Res: Solid Earth 120(2):1357–1375, 2015), Radiguet et al. (Geophys J Int 184(2):816–828, 2011, J Geophys Res 2012), Rivet et al. (Geophys Res Lett 38(8), 2011), Vergnolle et al. (J Geophys Res: Solid Earth 115(B8), 2010), Walpersdorf et al. Geophys Res Lett 38(15), 2011), to name a few. We believe that the new computational inverse method introduced in this paper holds great promise for applications to blind inversion cases, where both geometry and slip distribution are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Angelier, J., Tarantola, A., Valette, B., & Manoussis, S. (1982). Inversion of field data in fault tectonics to obtain the regional stressi. Single phase fault populations: A new method of computing the stress tensor. Geophysical Journal International, 69(3), 607–621.

    Article  Google Scholar 

  • Arnadóttir, T., & Segall, P. (1994). The 1989 Loma Prieta earthquake imaged from inversion of geodetic data. Journal of Geophysical Research: Solid Earth (1978–2012), 99(B11), 21835–21855.

  • Bekaert, D., Hooper, A., & Wright, T. (2015). Reassessing the 2006 Guerrero slow-slip event, Mexico: Implications for large earthquakes in the Guerrero Gap. Journal of Geophysical Research: Solid Earth, 120(2), 1357–1375.

    Google Scholar 

  • Beroza, G. C., & Ide, S. (2011). Slow earthquakes and nonvolcanic tremor. Annual Review of Earth and Planetary Sciences, 39, 271–296.

    Article  Google Scholar 

  • Cavalié, O., Pathier, E., Radiguet, M., Vergnolle, M., Cotte, N., Walpersdorf, A., et al. (2013). Slow slip event in the mexican subduction zone: Evidence of shallower slip in the guerrero seismic gap for the 2006 event revealed by the joint inversion of insar and gps data. Earth and Planetary Science Letters, 367, 52–60.

    Article  Google Scholar 

  • Cavalié, O. P., Vergnolle, M., & Cotte, M. (2013). Slow slip event in the Mexican subduction zone: Evidence of shallower slip in the guerrero seismic gap for the 2006 event revealed by the joint inversion of insar and gps data. Earth and Planetary Science Letters, 367, 52–60.

    Article  Google Scholar 

  • Dragert, H., Wang, K., & Rogers, G. (2004). Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone. Earth Planets and Space, 56(12), 1143–1150.

    Article  Google Scholar 

  • Dragert, H., Wang, K. L., & James, T. S. (2001). A silent slip event on the deeper Cascadia subduction interface. Science, 5521, 1525–1528.

    Article  Google Scholar 

  • Fu, Y., & Freymueller, J. T. (2013). Repeated large slow slip events at the southcentral Alaska subduction zone. Earth and Planetary Science Letters, 375, 303–311.

    Article  Google Scholar 

  • Fukahata, Y., & Wright, T. J. (2008). A non-linear geodetic data inversion using ABIC for slip distribution on a fault with an unknown dip angle. Geophysical Journal International, 173(2), 353–364.

    Article  Google Scholar 

  • Gohberg, I., & Kreĭn, M. G. (1988). Introduction to the theory of linear nonselfadjoint operators. American Mathematical Society, vol 18.

  • Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2), 215–223.

    Article  Google Scholar 

  • Guilhem, A., & Nadeau, R. M. (2012). Episodic tremors and deep slow-slip events in Central California. Earth and Planetary Science Letters, 357, 1–10.

    Article  Google Scholar 

  • Guilhem, A., Peng, Z., & Nadeau, R. M. (2010). High-frequency identification of non-volcanic tremor triggered by regional earthquakes. Geophysical Research Letters, 37(16), L16309. doi:10.1029/2010GL044660.

    Article  Google Scholar 

  • Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34(4), 561–580.

    Article  Google Scholar 

  • Ionescu, I. R., & Volkov, D. (2008). Detecting tangential dislocations on planar faults from traction free surface observations. Inverse Problems, 25(1), 015012.

    Article  Google Scholar 

  • Johnson, K. M., Hsu, Y.-J., Segall, P., & Yu, S.-B. (2001). Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of gps data. Geophysical Research Letters, 28(11), 2285–2288.

    Article  Google Scholar 

  • Kilmer, M. E., & O’Leary, D. P. (2001). Choosing regularization parameters in iterative methods for ill-posed problems. SIAM Journal on Matrix Analysis and Applications, 22(4), 1204–1221.

    Article  Google Scholar 

  • Kim, Y., Clayton, R. W., & Jackson, J. M. (2010). Geometry and seismic properties of the subducting Cocos plate in central Mexico. Journal of Geophysical Research: Solid Earth, 115, B06310. doi:10.1029/2009JB006942.

    Article  Google Scholar 

  • Kostoglodov, V., Bandy, W., Dominguez, J., & Mena, M. (1996). Gravity and seismicity over the Guerrero seismic gap, Mexico. Geophysical Research Letters, 23(23), 3385–3388.

    Article  Google Scholar 

  • Larson, K. M., Kostoglodov, V., Miyazaki, S., & Santiago, J. A. S. (2007). The 2006 aseismic slow slip event in Guerrero, Mexico: New results from GPS. Geophysical Research Letters, 34, L13309. doi:10.1029/2007GL029912.

    Article  Google Scholar 

  • Maceira, M., Rowe, C. A., Beroza, G., & Anderson, D. (2010). Identification of low-frequency earthquakes in non-volcanic tremor using the subspace detector method. Geophysical Research Letters, 37, L06303. doi:10.1029/2009GL041876.

    Article  Google Scholar 

  • Obara, K. (2002). Nonvolcanic deep tremor associated with subduction in southwest Japan. Science, 296(5573), 1679–1681.

    Article  Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.

    Google Scholar 

  • Pacheco, J. F., & Singh, S. K. (2010). Seismicity and state of stress in Guerrero segment of the Mexican subduction zone. Journal of Geophysical Research, 115, B01303. doi:10.1029/2009JB006453.

    Google Scholar 

  • Pardo, M., & Suarez, G. (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. Journal of Geophysical Research, 100(B7), 357–373.

    Article  Google Scholar 

  • Pérez-Campos, X., Kim, Y., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., et al. (2008). Horizontal subduction and truncation of the cocos plate beneath central Mexico. Geophysical Research Letters, 35, L18303. doi:10.1029/2008GL035127.

    Article  Google Scholar 

  • Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Valette, B., Kostoglodov, V., et al. (2011). Spatial and temporal evolution of a long term slow slip event: The 2006 Guerrero slow slip event. Geophysical Journal International, 184(2), 816–828.

    Article  Google Scholar 

  • Radiguet, M., Cotton, F., Vergnolle, M., Campillo, M., Walpersdorf, A., Cotte, N., et al. (2012). Slow slip events and strain accumulation in the Guerrero gap. Mexico. Journal of Geophysical Research, 117, B04305. doi:10.1029/2011JB008801.

    Google Scholar 

  • Rivet, D., Campillo, M., Shapiro, N. M., Cruz-Atienza, V., Radiguet, M., Cotte, N., et al. (2011). Seismic evidence of nonlinear crustal deformation during a large slow slip event in Mexico. Geophysical Research Letters, 38, L08308. doi:10.1029/2011GL047151.

    Article  Google Scholar 

  • Schwartz, S. Y., & Rokosky, J. M. (2007). Slow slip events and seismic tremor at circum-pacific subduction zones. Reviews of Geophysics, 45, RG3004. doi:10.1029/2006RG000208.

    Google Scholar 

  • Serpelloni, E., Anderlini, L., & Belardinelli, M. (2012). Fault geometry, coseismic-slip distribution and coulomb stress change associated with the 2009 april 6, mw 6.3, l aquila earthquake from inversion of gps displacements. Geophysical Journal International, 188(2), 473–489.

    Article  Google Scholar 

  • Shelly, D. R., Beroza, G. C., & Ide, S. (2007). Non-volcanic tremor and low-frequency earthquake swarms. Nature, 446(7133), 305–307.

    Article  Google Scholar 

  • Shibazaki, B., & Iio, Y. (2003). On the physical mechanism of silent slip events along the deeper part of the seismogenic zone. Geophysical Research Letters, 30(9), 4.

    Article  Google Scholar 

  • Singh, S., & Pardo, M. (1993). Geometry of the Benioff zone and state of stress in the overriding plate in central Mexico. Geophysical Research Letters, 20(14), 1483–1486.

    Article  Google Scholar 

  • Suarez, G., Monfret, T., Wittlinger, G., & David, C. (1990). Geometry of subduction and depth of the seismogenic zone in the Guerrero gap, Mexico. Nature, 345(6273), 336–338.

    Article  Google Scholar 

  • Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics.

  • USGS (2017). Slab models for subduction zones. https://earthquake.usgs.gov/data/slab/. Accessed 02 Feb 2017.

  • Vergnolle, M., Walpersdorf, A., Kostoglodov, V., Tregoning, P., Santiago, J. A., Cotte, N., et al. (2010). Slow slip events in Mexico revised from the processing of 11 year GPS observations. Journal of Geophysical Research: Solid Earth, 115, B08403. doi:10.1029/2009JB006852.

    Article  Google Scholar 

  • Voisin, C., Renard, F., & Grasso, J. R. (2007). Long term friction: from stick-slip to stable sliding. Geophysical Research Letters, 34, L13301. doi:10.1029/2007GL029715.

    Article  Google Scholar 

  • Voisin, C., Grasso, J. R., Larose, E., & Renard, F. (2008). Evolution of seismic signals and slip patterns along subduction zones: Insights from a friction lab scale experiment. Geophysical Research Letters, 35, L08302. doi:10.1029/2008GL033356.

    Article  Google Scholar 

  • Volkov, D. (2009a). A double layer surface traction free green’s tensor. SIAM Journal on Applied Mathematics, 69(5), 1438–1456.

    Article  Google Scholar 

  • Volkov, D. (2009b). Faults in elastic half space: Direct and inverse problem. Contemporary Mathematics, 494, 81–94.

    Article  Google Scholar 

  • Walpersdorf, A., Cotte, N., Kostoglodov, V., Vergnolle, M., Radiguet, M., Santiago, J. A., et al. (2011). Two successive slow slip events evidenced in 2009–2010 by a dense GPS network in Guerrero. Mexico. Geophysical Research Letters, 38, L15307. doi:10.1029/2011GL048124.

    Google Scholar 

  • Wright, T., Parsons, B., Jackson, J., Haynes, M., Fielding, E., England, P., et al. (1999). Source parameters of the 1 October 1995 Dinar (Turkey) earthquake from SAR interferometry and seismic bodywave modelling. Earth and Planetary Science Letters, 172(1), 23–37.

    Article  Google Scholar 

  • Zigone, D., Voisin, C., Larose, E., Renard, F., & Campillo, M. (2011). Slip acceleration generates seismic tremor like signals in friction experiments. Geophysical Research Letters, 38, L01315. doi:10.1029/2010GL045603.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to M. Campillo for his guidance and multiple enlightening discussions. We also wish to thank A. Walpersdorf for kindly supplying us with GPS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Volkov.

Additional information

D. Volkov is supported by a Simons Foundation Collaboration Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, D., Voisin, C. & Ionescu, I.R. Determining Fault Geometries From Surface Displacements. Pure Appl. Geophys. 174, 1659–1678 (2017). https://doi.org/10.1007/s00024-017-1497-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1497-y

Keywords

Navigation