Skip to main content
Log in

Eruptive and shallow conduit dynamics during Vulcanian explosions: insights from the Episode IV block field of the 1912 eruption of Novarupta, Alaska

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The study of ~1300 juvenile and lithic blocks from a Vulcanian phase of the 1912 eruption of Novarupta provides new insight into the state of the magma as an eruption passes from sustained Plinian to dome growth. Blocks that were predominantly ballistically ejected were measured and sampled within an ~2–3-km radius from vent and supply a picture of a dynamic and complex shallow conduit prior to magma fragmentation in repeated small explosions. Extreme conduit heterogeneity is expressed in the diverse range of dacitic block types, including pumiceous, dense, banded, and variably welded breccia clasts, all with varied degrees of surface breadcrusting. We present new maps of block lithology and size, making Episode IV the most thoroughly mapped Vulcanian deposit to date. Sectorial regions rich in specific lithologies together with the block size data suggest multiple, small explosions. Modeling of block trajectories to reproduce the field data indicates that ejection velocities range from 50 to 124 m/s with a median of ~70 m/s. We propose that individual explosions originated from a heterogeneous shallow conduit characterized both by the juxtaposition of magma domains of contrasting texture and vesiculation state and by the intimate local mingling of different textures on short vertical and horizontal length scales at the contacts between these domains. In our model, each explosion disrupted the conduit to only shallow depths and tapped diverse, localized pockets within the conduit. This contrasts with existing models for repetitive Vulcanian explosions, and suggests that the dynamics of Episode IV were more complex than a simple progressive top-down evacuation of a horizontally stratified conduit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adams NK, Houghton BF, Fagents SA, Hildreth W (2006a) The transition from explosive to effusive eruptive regime: the example of the 1912 Novarupta eruption. Alaska Geol Soc Am Bull 118:620–634

    Article  Google Scholar 

  • Adams NK, Houghton BF, Hildreth W (2006b) Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta. Alaska Bull Volcanol 69:189–206. doi:10.1007/s00445-006-0067-4

    Article  Google Scholar 

  • Alatorre-Ibargüengoitia MA, Delgado-Granados H (2006) Experimental determination of drag coefficient for volcanic materials: calibration and application of a model to Popocatépetl volcano (Mexico) ballistic projectiles. Geophys Res Lett 32. doi:10.1029/2006GL026195

  • Alatorre-Ibargüengoitia MA, Delgado-Granados H, Dingwell DB (2012) Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico). Bull Volcanol 74:2155–2169. doi:10.1007/s00445-012-0657-2

    Article  Google Scholar 

  • Alatorre-Ibargüengoitia MA, Scheu B, Dingwell DB, Delgado-Granados H, Taddeucci J (2010) Energy consumption by magmatic fragmentation and pyroclast ejection during Vulcanian eruptions. Earth Planet Sci Lett 291:60–69. doi:10.1016/j.epsl.2009.12.051

    Article  Google Scholar 

  • Bagheri G, Bonadonna C (2016) Aerodynamics of volcanic particles: characterization of size, shape, and settling velocity. In: Mackie S, Cashman K, Ricketts H, Rust A, Watson M (eds) Volcanic ash. Elsevier, Amsterdam, pp 39–52

    Chapter  Google Scholar 

  • Benage MC, Dufek J, Degruyter W, Geist D, Harpp K, Rader E (2014) Tying textures of breadcrust bombs to their transport regime and cooling history. J Volcanol Geotherm Res 274:92–107. doi:10.1016/j.jvolgeores.2014.02.005

    Article  Google Scholar 

  • Biass S, Falcone JL, Bonadonna C, Di Traglia F, Pistolesi M, Rosi M, Lestuzzi P (2016) Great Balls of Fire: A probabilistic approach to quantify the hazard related to ballistics — A case study at La Fossa volcano, Vulcano Island, Italy. J Volcanol Geotherm Res 325:1–14. doi:10.1016/j.jvolgeores.2016.06.006

  • Bertin D (2017) 3-D ballistic transport of ellipsoidal volcanic projectiles considering horizontal wind field and variable shape-dependent drag coefficients. J Geophys Res 122:1125–1151. doi:10.1002/2016JB013320

    Article  Google Scholar 

  • Burgisser A, Arbaret L, Druitt TH, Giachetti T (2011) Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: II. Overpressure and depth distributions. J Volcanol Geotherm Res 199:193–205. doi:10.1016/j.jvolgeores.2010.11.014

    Article  Google Scholar 

  • Burgisser A, Poussineau S, Arbaret L, Druitt TH, Giachetti T, Bourdier J-L (2010) Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano Montserrat: I. Pressure and vesicularity distributions. J Volcanol Geotherm Res 194:27–41. doi:10.1016/j.jvolgeores.2010.04.008

    Article  Google Scholar 

  • Cassidy M, Cole PD, Hicks KE, Varley NR, Peters N, Lerner AH (2015) Rapid and slow: varying magma ascent rates as a mechanism for Vulcanian explosions. Earth Planet Sci Lett 420:73–84. doi:10.1016/j.epsl.2015.03.025

    Article  Google Scholar 

  • Christiansen RL, Peterson DW (1981) Chronology of the 1980 eruptive activity. In: Lipman PW, Mullineaux DR (Eds.), The 1980 eruptions of Mount St. Helens, Washington. U.S Geol Surv Prof Pap 1250:17–31

  • Clarke AB (2013) Unsteady explosive activity: vulcanian eruptions. In: Fagents SA, Gregg TKP, Lopes RMC (Eds.). Modeling volcanic processes. Camb. Univ. Press, pp. 129–152

  • Clarke AB, Neri A, Voight B, Macedonio G, Druitt TH (2002a) Computational modelling of the transient dynamics of the August 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: influence of initial conduit conditions on near-vent pyroclastic dispersal, in: Druitt, T.H., Kokelaar, B.P. (Eds.), The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc Lond, pp. 319–348.

  • Clarke AB, Ongaro TE, Belousov A (2015) Vulcanian eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (Eds.). The encyclopedia of volcanoes. Acad. Press, pp. 505–518

  • Clarke AB, Stephens S, Teasdale R, Sparks RSJ, Diller K (2007) Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano Montserrat. J Volcanol Geotherm Res 161:261–274. doi:10.1016/j.jvolgeores.2006.11.007

    Article  Google Scholar 

  • Clarke AB, Voight B, Neri A, Macedonio G (2002b) Transient dynamics of vulcanian explosions and column collapse. Lett Nat 415:897–901. doi:10.1038/415897a

    Article  Google Scholar 

  • Coombs ML, Eichelberger JC, Rutherford MJ (2000) Magma storage and mixing conditions for the 1953–1974 eruptions of Southwest Trident volcano, Katmai National Park Alaska. Contrib Mineral Petrol 140:99–118

    Article  Google Scholar 

  • de’ Michieli, Vitturi M, Neri A, Esposti Ongaro T, Lo Savio S, Boschi E (2010) Lagrangian modeling of large volcanic particles: application to Vulcanian explosions. J Geophys Res 115. doi:10.1029/2009JB007111

  • Diller K, Clarke AB, Voight B, Neri A (2006) Mechanisms of conduit plug formation: implications for vulcanian explosions. Geophys Res Lett 33. doi:10.1029/2006GL027391

  • Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G, Voight B (2002) Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat. In: Druitt TH, Kokelaar BP (Eds.). The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geol Soc Lond, pp. 281–306

  • Fagents SA, Wilson L (1993) Explosive volcanic eruptions-VII the ranges of pyroclasts ejected in transient volcanic explosions. Geophys J Int 113:359–370. doi:10.1111/j.1365-246X.1993.tb00892.x

    Article  Google Scholar 

  • Fierstein J, Hildreth W (1992) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684. doi:10.1007/BF00430778

  • Fudali RF, Melson WG (1971) Ejecta velocities, magma chamber pressure and kinetic energy associated with the 1968 eruption of Arenal volcano. Bull Volcanol 35:383–401. doi:10.1007/BF02596963

    Article  Google Scholar 

  • Giachetti T, Druitt TH, Burgisser A, Arbaret L, Galven C (2010) Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano. Montserrat J Volcanol Geotherm Res 193:215–231. doi:10.1016/j.jvolgeores.2010.04.001

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2005) Flow banding in obsidian: a record of evolving textural heterogeneity during magma deformation. Earth Planet Sci Lett 236:135–147. doi:10.1016/j.epsl.2005.04.031

    Article  Google Scholar 

  • Hildreth W (1987) New perspectives on the eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park Alaska. Bull Volcanol 49:680–693. doi:10.1007/BF01080359

    Article  Google Scholar 

  • Hildreth W, Fierstein J (2000) Katmai volcanic cluster and the great eruption of 1912. Geol Soc Am Bull 112:1594–1620. doi:10.1130/0016-7606(2000)112<1594:KVCATG>2.0.CO;2

  • Hildreth W, Fierstein J, (2012) The Novarupta-Katmai eruption of 1912: largest eruption of the twentieth century: centennial perspectives. U.S. Geol. Surv. Prof. Pap. 1791

  • Hoblitt RP, Wolfe EW, Scott WE, Couchman MR, Pallister JS, Javier D (1996) The preclimatic eruptions of Mount Pinatubo, June 1991. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo. Philippines. Univ. Wash. Press, Seattle, WA, pp 457–511

    Google Scholar 

  • Houghton BF, Wilson CJN, Fierstein J, Hildreth W (2004) Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta. Alaska Bull Volcanol 66:95–133. doi:10.1007/s00445-003-0297-7

    Article  Google Scholar 

  • Kennedy BM, Spieler O, Scheu B, Kueppers U, Taddeucci J (2005) Conduit implosion during Vulcanian eruptions. Geology 33:581–584. doi:10.1130/G21488.1

    Article  Google Scholar 

  • Mastin LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. U.S. Geol. Surv. Open-File Rep. 01–45 16

  • Melnik O, Sparks RSJ (2002) Dynamics of magma ascent and lava extrusion at Soufrière Hills Volcano. Montserrat Geol Soc Lond Mem 21:153–171. doi:10.1144/GSL.MEM.2002.021.01.07

    Article  Google Scholar 

  • Melnik O, Sparks RSJ (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41. doi:10.1038/46950

    Article  Google Scholar 

  • Minakami T (1942) On the distribution of volcanic ejecta. (Part 1) the distributions of volcanic bombs ejected by the recent explosion of Asama. Bull Earthq Res Inst

  • Nairn IA, Self S (1978) Explosive eruptions and pyroclastic avalanches from Ngauruhoe in February 1975. J Volcanol Geotherm Res 3:39–60

    Article  Google Scholar 

  • Nguyen CT, Gonnermann HM, Houghton BF (2014) Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geology 42:703–706. doi:10.1130/G35593.1

    Article  Google Scholar 

  • Perugini D, Ventura G, Petrelli M, Poli G (2004) Kinematic significance of morphological structures generated by mixing of magmas: a case study from Salina Island (southern Italy). Earth Planet Sci Lett 222:1051–1066. doi:10.1016/j.epsl.2004.03.038

    Article  Google Scholar 

  • Polacci M, Papale P, Rosi M (2001) Textural heterogeneities in pumices from the climactic eruption of Mount Pinatubo, 15 June 1991, and implications for magma ascent dynamics. Bull Volcanol 63:83–97. doi:10.1007/s004450000123

    Article  Google Scholar 

  • Robertson R, Cole P, Sparks RSJ, Harford C, Lejeune AM, McGuire WJ, Miller AD, Murphy MD, Norton G, Stevens NF, Young SR (1998) The explosive eruption of Soufrière Hills Volcano, Montserrat, West Indies, 17 September, 1996. Geophys Res Lett 25:3429–3432. doi:10.1029/98GL01442

    Article  Google Scholar 

  • Sahetapy-Engel ST, Harris AJL, Marchetti E (2008) Thermal, seismic and infrasound observations of persistent explosive activity and conduit dynamics at Santiaguito lava dome Guatemala. J Volcanol Geotherm Res 173:1–14. doi:10.1016/j.jvolgeores.2007.11.026

    Article  Google Scholar 

  • Scheu B, Kueppers U, Mueller S, Spieler O, Dingwell DB (2008) Experimental volcanology on eruptive products of Unzen volcano. J Volcanol Geotherm Res 175:110–119. doi:10.1016/j.jvolgeores.2008.03.023

    Article  Google Scholar 

  • Scheu B, Spieler O, Dingwell DB (2006) Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bull Volcanol 69:175–187. doi:10.1007/s00445-006-0066-5

    Article  Google Scholar 

  • Seaman SJ, Dyar MD, Marinkovic N (2009) The effects of heterogeneity in magma water concentration on the development of flow banding and spherulites in rhyolitic lava. J Volcanol Geotherm Res 183:157–169. doi:10.1016/j.volgeores.2009.03.001

    Article  Google Scholar 

  • Seaman SJ, Scherer EE, Standish JJ (1995) Multistage magma mingling and the origin of flow banding in the Aliso lava dome, Tumacacori Mountains, southern Arizona. J Geophys Res 100:8381–8398. doi:10.1029/94JB03260

    Article  Google Scholar 

  • Self S, Keinle J, Huot J-P (1980) Ukinrek maars, Alaska, II. Deposit and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65

    Article  Google Scholar 

  • Self S, Wilson L, Nairn IA (1979) Vulcanian eruption mechanisms. Nature 277:440–443

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JE, Glaze L, Woods AW (1997) Volcanic Plumes. Wiley, New York

    Google Scholar 

  • Tuffen H, Dingwell D (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387. doi:10.1007/s00445-004-0383-5

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092. doi:10.1130/G19777.1

    Article  Google Scholar 

  • Turcotte DL, Ockendon H, Ockendon JR, Cowley SJ (1990) A mathematical model of vulcanian eruptions. Geophys J Int 103:211–217. doi:10.1111/j.1365-246X.1990.tb01763.x

    Article  Google Scholar 

  • Waitt RB, Mastin LG, Miller TP (1995). Ballistic showers during Crater Peak eruptions of Mount Spurr Volcano, summer 1992. In: Keith TEC (Ed.). The 1992 eruptions of Crater Peak vent, Mount Spurr Volcano, Alaska. U.S Geol Surv Bull B-2139, pp. 89–106

  • Wilson L (1972) Explosive volcanic eruptions-II. The atmospheric trajectories of pyroclasts. Geophys J Int 30:381–392. doi:10.1111/j.1365-246X.1972.tb05822.x

    Article  Google Scholar 

  • Woods AM (1995) A model of vulcanian explosions. Nucl Eng Des 155:345–357. doi:10.1016/0029-5493(94)00881-X

    Article  Google Scholar 

  • Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano Ecuador. Bull Volcanol 69:281–300. doi:10.1007/s00445-006-0073-6

    Article  Google Scholar 

  • Wright HMN, Folkes CB, Cas RAF, Cashman KV (2011) Heterogeneous pumice populations in the 2.08-Ma Cerro Galán Ignimbrite: implications for magma recharge and ascent preceding a large-volume silicic eruption. Bull Volcanol 73:1513–1533. doi:10.1007/s00445-011-0525-5

    Article  Google Scholar 

  • Yamagishi H, Feebrey C (1994) Ballistic ejecta from the 1988-1989 andesitic Vulcanian eruptions of Tokachidake volcano, Japan: morphological features and genesis. J Volcanol Geotherm Res 59:269–278

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation grant EAR13-48080 with additional support from the Don Richter Memorial Fund. Special thanks to Tim Orr, Ed Llewellin, Hannah Azouz, and Jaclyn Guenther for assistance with field work. We would also like to thank (1) Alexa Van Eaton and an anonymous reviewer for their helpful suggestions and (2) Stephen Self for constructive and thoughtful editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Isgett.

Additional information

Editorial responsibility: S. Self

Electronic supplementary material

ESM 1

(PDF 1.90 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isgett, S.J., Houghton, B.F., Fagents, S.A. et al. Eruptive and shallow conduit dynamics during Vulcanian explosions: insights from the Episode IV block field of the 1912 eruption of Novarupta, Alaska. Bull Volcanol 79, 58 (2017). https://doi.org/10.1007/s00445-017-1138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1138-4

Keywords

Navigation