Skip to main content
Log in

Experimental and numerical analysis of frictional contact scenarios: from macro stick–slip to continuous sliding

  • Advances in Dynamics, Stability and Control of Mechanical Systems
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This work is an in-depth analysis of frictional phenomena including macroscopic stick–slip and mode coupling instabilities, which can occur at different scales ranging from earthquakes to vibrational issues in machining processes. The paper presents a comparison between experimental observations of frictional macroscopic behaviours reproduced in a dedicated laboratory set-up and numerical simulations, obtained by transient finite element simulations able to reproduce the contact dynamics. The explicit finite element code PLASTD has been used to perform numerical transient analysis of two elastic bodies in frictional contact. On the other hand an experimental set-up has been used to investigate the macroscopic response of two blocks of polycarbonate in relative motion, highlighting how the contact frictional behaviour is affected by the imposed boundary conditions. Time evolution of global contact forces has been investigated; macroscopic stick–slip, modal instability behaviours and the transition to continuous sliding as a function of the system parameters have been observed. The frequency and time analysis of experimental phenomena exhibits a good agreement with numerical results obtained through transient contact simulations. The numerical analysis allows for explaining the interaction between local contact behaviour and system dynamics, which is at the origin of the different frictional scenarios. Maps of the instability scenarios are drawn as a function of boundary conditions or system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Andreaus U, Casini P (2001) Dynamics of friction oscillators excited by a moving base and/or driving force. J Sound Vib 245:685–699

    Article  ADS  Google Scholar 

  2. Hoffmann N, Fischer M, Allgaier R, Gaul L (2002) A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech Res Commun 29:197–205

    Article  MATH  Google Scholar 

  3. Renouf M, Cao HP, Nhu VH (2011) Multiphysical modeling of third-body rheology. Tribol Int 44:417–425

    Article  Google Scholar 

  4. Andreaus U, Casini P (2002) Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle. Int J Non-Linear Mech 37:117–133

    Article  MATH  Google Scholar 

  5. D’Annibale F, Luongo A (2013) A damage constitutive model for sliding friction coupled to wear. Contin Mech Thermodyn 25:503–522

    Article  ADS  Google Scholar 

  6. Rubinstein SM, Cohen G, Fineberg J (2007) Dynamics of precursors to frictional sliding. Phys Rev Lett 98:226103

    Article  ADS  Google Scholar 

  7. Voisin C, Renard F, Grasso J-R (2007) Long term friction: from stick–slip to stable sliding. Geophys Res Lett 34:L13301

    Article  ADS  Google Scholar 

  8. Rubinstein SM, Cohen G, Fineberg J (2004) Detachment fronts and the onset of dynamic friction. Nature 430:1005–1009

    Article  ADS  Google Scholar 

  9. Rubinstein SM, Cohen G, Fineberg J (2009) Visualizing stick–slip: experimental observations of processes governing the nucleation of frictional sliding. J Phys D 42:214016

    Article  ADS  Google Scholar 

  10. Hervé B, Sinou JJ, Mahé H, Jezequel L (2008) Analysis of squeal noise and mode coupling instabilities including damping and gyroscopic effects. Eur J Mech-A 27:141–160

    Article  MATH  Google Scholar 

  11. Ouyang H, Nack W, Yuan Y, Chen F (2005) Numerical analysis of automotive disc brake squeal: a review. Int J Veh Noise Vib 1:207–231

    Article  Google Scholar 

  12. Sinou JJ (2010) Transient non-linear dynamic analysis of automotive disc brake squeal—on the need to consider both stability and non-linear analysis. Mech Res Commun 37:96–105

    Article  MATH  Google Scholar 

  13. Dezi M, Forte P, Frendo F (2014) Motorcycle brake squeal: experimental and numerical investigation on a case study. Meccanica 49:1011–1021

    Article  Google Scholar 

  14. Weiss C, Gdaniec P, Hoffmann NP, Hothan A, Huber G, Morlock MM (2010) Squeak in hip endoprosthesis systems: an experimental study and a numerical technique to analyze design variants. Med Eng Phys 32:604–609

    Article  Google Scholar 

  15. Heckl MA, Abrahams ID (2000) Curve squeal of train wheels, part 1: mathematical model for its generation. J Sound Vib 229:669–693

    Article  ADS  MATH  Google Scholar 

  16. Goodman R, Sundaram PN (1978) Fault and system stiffnesses and stick–slip phenomena. Pure Appl Geophys 116:873–887

    Article  ADS  Google Scholar 

  17. Shi Z, Ben-Zion Y (2006) Dynamic rupture on a bimaterial interface governed by slip-weakening friction. Geophys J Int 165:469–484

    Article  ADS  Google Scholar 

  18. Di Bartolomeo M, Massi F, Baillet L, Culla A, Fregolent A, Berthier Y (2012) Wave and rupture propagation at frictional bimaterial sliding interfaces: from local to global dynamics, from stick–slip to continuous sliding. Tribol Int 52:117–131

    Article  Google Scholar 

  19. Tonazzi D, Massi F, Culla A, Baillet L, Fregolent A, Berthier Y (2013) Instability scenarios between elastic media under frictional contact. Mech Syst Signal Process 40:754–766

    Article  ADS  Google Scholar 

  20. Di Bartolomeo M, Meziane A, Massi F, Baillet L, Fregolent A (2010) Dynamic rupture at a frictional interface between dissimilar materials with asperities. Tribol Int 43:1620–1630

    Article  Google Scholar 

  21. Radiguet M, Kammer DS, Gillet P, Molinari J-F (2013) Survival of heterogeneous stress distributions created by precursory slip at frictional interfaces. Phys Rev Lett 111:164302

    Article  ADS  Google Scholar 

  22. Adams GG (1998) Steady sliding of two elastic half-spaces with friction reduction due to interface stick–slip. J Appl Mech 65:470–475

    Article  Google Scholar 

  23. Adams GG, Nosonovsky M (2001) Elastic waves induced by the frictional sliding of two elastic half-spaces. In: Dowson D, Priest M, Dalmaz G (eds) Tribology series, vol 39. Elsevier, Amsterdam, pp 47–54

    Google Scholar 

  24. Massi F, Baillet L, Giannini O, Sestieri A (2007) Brake squeal: linear and nonlinear numerical approaches. Mech Syst Signal Process 21:2374–2393

    Article  ADS  Google Scholar 

  25. Massi F, Rocchi J, Culla A, Berthier Y (2010) Coupling system dynamics and contact behaviour: modelling bearings subjected to environmental induced vibrations and ‘false brinelling’ degradation. Mech Syst Signal Process 24:1068–1080

    Article  ADS  Google Scholar 

  26. Magnier V, Brunel JF, Dufrénoy P (2014) Impact of contact stiffness heterogeneities on friction-induced vibration. Int J Solids Struct 51:1662–1669

    Article  Google Scholar 

  27. Meziane A, D’Errico S, Baillet L, Laulagnet B (2007) Instabilities generated by friction in a pad–disc system during the braking process. Tribol Int 40:1127–1136

    Article  Google Scholar 

  28. Meziane A, Baillet L, Laulagnet B (2010) Experimental and numerical investigation of friction-induced vibration of a beam-on-beam in contact with friction. Appl Acoust 71:843–853

    Article  Google Scholar 

  29. Maegawa S, Suzuki A, Nakano K (2010) Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol Lett 38:313–323

    Article  Google Scholar 

  30. Nielsen S, Taddeucci J, Vinciguerra S (2010) Experimental observation of stick–slip instability fronts. Geophys J Int 180:697–702

    Article  ADS  Google Scholar 

  31. Baillet L, Sassi T (2002) Finite element method with Lagrange multipliers for contact problems with friction. CR Math 334:917–922

    Article  MATH  MathSciNet  Google Scholar 

  32. Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Meth Eng 32:103–128

    Article  MATH  Google Scholar 

  33. Renouf M, Massi F, Fillot N, Saulot A (2011) Numerical tribology of a dry contact. Tribol Int 44:834–844

    Article  Google Scholar 

  34. Ben-David O, Fineberg J (2011) Static friction coefficient is not a material constant. Phys Rev Lett 106:254301

    Article  ADS  Google Scholar 

  35. Baillet L, Link V, D’errico S, Berthier Y (2005) Influence of sliding contact local dynamics on macroscopic friction coefficient variation. In: Elemént RED (ed.), vol. 14/2-3, pp 305–321.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Tonazzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonazzi, D., Massi, F., Baillet, L. et al. Experimental and numerical analysis of frictional contact scenarios: from macro stick–slip to continuous sliding. Meccanica 50, 649–664 (2015). https://doi.org/10.1007/s11012-014-0010-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0010-2

Keywords

Navigation