Skip to main content

Advertisement

Log in

Generation of CO2-rich melts during basalt magma ascent and degassing

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

To test mechanisms of basaltic magma degassing, continuous decompressions of volatile-bearing (2.7–3.8 wt% H2O, 600–1,300 ppm CO2) Stromboli melts were performed from 250–200 to 50–25 MPa at 1,180–1,140 °C. Ascent rates were varied from 0.25 to ~1.5 m/s. Glasses after decompression show a wide range of textures, from totally bubble-free to bubble-rich, the latter with bubble number densities from 104 to 106 cm−3, similar to Stromboli pumices. Vesicularities range from 0 to ~20 vol%. Final melt H2O concentrations are homogeneous and always close to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. High vesicularity charges have glass CO2 concentrations that follow theoretical equilibrium degassing paths, whereas glasses from low vesicularity charges show marked deviations from equilibrium, with CO2 concentrations up to one order of magnitude higher than solubilities. FTIR profiles and maps reveal glass CO2 concentration gradients near the gas–melt interface. Our results stress the importance of bubble nucleation and growth, and of volatile diffusivities, for basaltic melt degassing. Two characteristic distances, the gas interface distance (distance either between bubbles or to gas–melt interfaces) and the volatile diffusion distance, control the degassing process. Melts containing numerous and large bubbles have gas interface distances shorter than volatile diffusion distances, and degassing proceeds by equilibrium partitioning of CO2 and H2O between melt and gas bubbles. For melts where either bubble nucleation is inhibited or bubble growth is limited, gas interface distances are longer than volatile diffusion distances. Degassing proceeds by diffusive volatile transfer at the gas–melt interface and is kinetically limited by the diffusivities of volatiles in the melt. Our experiments show that CO2-oversaturated melts can be generated as a result of magma decompression. They provide a new explanation for the occurrence of CO2-rich natural basaltic glasses and open new perspectives for understanding explosive basaltic volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiuppa A, Bertagnini A, Metrich N, Moretti R, Di Muro A (2010a) A model of degassing for Stromboli volcano. Earth Planet Sci Lett 295:195–204

    Article  Google Scholar 

  • Aiuppa A, Burton M, Caltabiano T, Giudice G, Guerrieri S, Liuzzo M, Murè F, Salerno G (2010b) Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys Res Lett 37:L17303

    Article  Google Scholar 

  • Allard P (2010) A CO2-rich gas trigger of explosive paroxysms at Stromboli basaltic volcano, Italy. J Volcanol Geotherm Res 189:363–374

    Article  Google Scholar 

  • Aubaud C, Pineau F, Jambon A, Javoy M (2004) Kinetic disequilibrium of C, He, Ar and carbon isotopes during degassing of mid-ocean ridge basalts. Earth Planet Sci Lett 222:391–406

    Article  Google Scholar 

  • Bai L, Baker DR, Rivers M (2007) Experimental study of bubble growth in Stromboli basalt melts at 1 atm. Earth Planet Sci Lett 267:533–547

    Article  Google Scholar 

  • Baker DR, Freda C, Brooker RA, Scarlato P (2005) Volatile diffusion in silicate melts and its effects on melt inclusions. Ann Geophys 48:699–717

    Google Scholar 

  • Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290:289–301

    Article  Google Scholar 

  • Bottinga Y, Javoy M (1990a) MORB degassing: bubble growth and ascent. Chem Geol 81:255–270

    Article  Google Scholar 

  • Bottinga Y, Javoy M (1990b) Mid-ocean ridge basalt degassing: bubble nucleation. J Geophys Res 95:5125–5131

    Article  Google Scholar 

  • Burton MR, Allard P, Muré F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 37:227–230

    Article  Google Scholar 

  • Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce, D, CO2/Nb) in the north atlantic mantle. Earth Planet Sci Lett 265:672–685

    Article  Google Scholar 

  • Collins SJ, Pyle DM, Maclennan J (2009) Melt inclusion track pre-eruption storage and dehydration of magmas at Etna. Geology 37:571–574

    Article  Google Scholar 

  • Di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47:1317–1343

    Article  Google Scholar 

  • Dixon JE, Stolper EM (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing. J Petrol 36:1633–1646

    Google Scholar 

  • Dixon JE, Stolper EM, Delaney JR (1988) Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet Sci Lett 90:87–104

    Article  Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631

    Google Scholar 

  • Gardner JE, Ketcham RA (2011) Bubble nucleation in rhyolite and dacite melts: temperature dependence of surface tension. Contrib Mineral Petrol 162:929–943

    Article  Google Scholar 

  • Head JW III, Wilson L (2003) Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits. J Volc Geotherm Res 121:155–193

    Article  Google Scholar 

  • Helo C, Longpré MA, Shimizu N, Clague DA, Stix J (2011) Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nature Geosci 4:260–263

    Article  Google Scholar 

  • Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60

    Article  Google Scholar 

  • Khitarov NI, Lebedev YB, Dorfman AM, Bagdasarov NS (1979) Effects of temperature, pressure and volatiles on the surface tension of molten basalt. Geochem Int 16:78–86

    Google Scholar 

  • Landi P, Metrich N, Bertagnini A, Rosi M (2008) Recycling and “re-hydration” of degassed magma inducing transient dissolution/crystallization events at Stromboli (Italy). J Volc Geotherm Res 174:325–336

    Article  Google Scholar 

  • Lensky NG, Niebo RW, Holloway JR, Lyakhovsky V, Navon O (2006) Bubble nucleation as a trigger for xenolith entrapment in mantle melts. Earth Planet Sci Lett 245:278–288

    Article  Google Scholar 

  • Lesne P, Scaillet B, Pichavant M, Iacono-Marziano G, Bény J-M (2011a) The H2O solubility of alkali basaltic melts: an experimental study. Contrib Mineral Petrol 162:133–151

    Article  Google Scholar 

  • Lesne P, Scaillet B, Pichavant M, Bény J-M (2011b) The carbon dioxide solubility in alkali basalts: an experimental study. Contrib Mineral Petrol 162:153–168

    Article  Google Scholar 

  • Lesne P, Kohn SC, Blundy J, Witham F, Botcharnikov RE, Behrens H (2011c) Experimental simulation of closed-system degassing in the system basalt-H2O-CO2-S-Cl. J Petrol 52:1737–1762

    Article  Google Scholar 

  • Mangan M, Sisson T (2000) Delayed, disequilibrium degassing in rhyolite magma: decompression experiments and implications for explosive volcanism. Earth Planet Sci Lett 183:441–455

    Article  Google Scholar 

  • Mangan M, Sisson T (2005) Evolution of melt-vapor surface tension in silicic volcanic systems: experiments with hydrous melts. J Geophys Res 110:B01202

    Article  Google Scholar 

  • Metrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcanic plumbing system with inferences on the eruptive dynamics. J Petrol 51:603–626

    Article  Google Scholar 

  • Moretti R, Papale P (2004) On the oxidation state and volatile behaviour in multicomponent gas-melt equilibria. Chem Geol 213:265–280

    Article  Google Scholar 

  • Mourtada-Bonnefoi CC, Laporte D (2002) Homogeneous bubble nucleation in rhyolitic magmas: an experimental study of the effect of H2O and CO2. J Geophys Res 107(B4):2066. doi:10.1029/2001JB000290

    Article  Google Scholar 

  • Mourtada-Bonnefoi CC, Laporte D (2004) Kinetics of bubble nucleation in a rhyolitic melt: an experimental study of the effect of ascent rate. Earth Planet Sci Lett 218:521–537

    Article  Google Scholar 

  • Nowak M, Cichy S, Botcharnikov RE, Walker N, Hurkuck W (2011) A new type of high-pressure low-flow metering valve for continuous decompression: first experimental results on degassing of rhyolitic melts. Am Miner 96:1373–1380

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Pichavant M, Di Carlo I, Le Gac Y, Rotolo SG, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli volcano, Italy. J Petrol 50:601–624

    Article  Google Scholar 

  • Pichavant M, Pompilio M, D’Oriano C, Di Carlo I (2011) The deep feeding system of Stromboli, Italy: insights from a primitive golden pumice. Eur J Miner 23:499–517

    Article  Google Scholar 

  • Pineau F, Javoy M (1994) Strong degassing at ridge crests: the behaviour of dissolved carbon and water in basalt glasses at 14°N, Mid-Atlantic Ridge. Earth Planet Sci Lett 123:179–198

    Article  Google Scholar 

  • Pino NA, Moretti R, Allard P, Boschi E (2011) Seismic precursors of a basaltic paroxysmal explosion track deep gas accumulation and slug upraise. J Geophys Res 116:B02313

    Article  Google Scholar 

  • Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33:L13312

    Article  Google Scholar 

  • Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli volcano (Italy). Bull Volcanol 62:294–300

    Article  Google Scholar 

  • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour under saturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455

    Article  Google Scholar 

  • Shinohara H, Aiuppa A, Giudice G, Gurrieri S, Liuzzo M (2008) Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy. J Geophys Res 113:B09203

    Article  Google Scholar 

  • Sparks RSJ, Barclay J, Jaupart C, Mader HM, Phillips JC (1994) Physical aspects of magmatic degassing I. Experimental and theoretical constraints on vesiculation. In: Carroll MR, Holloway JR (eds) Volatiles in magmas, vol 30. Mineralogical Society of America Reviews in Mineralogy, pp 413–445

  • Spilliaert N, Allard P, Metrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111:B04203

    Article  Google Scholar 

  • Suckale J, Hager BH, Elkins-Tanton LT, Nave J-C (2010) It takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modelling normal Strombolian activity. J Geophys Res 115:B07410

    Article  Google Scholar 

  • Vetere F, Behrens H, Misiti V, Ventura G, Holtz F, De Rosa R, Deubener J (2007) The viscosity of shoshonitic melts (Vulcanello Peninsula, Aeolian Islands, Italy): insights on the magma ascent in dykes. Chem Geol 245:89–102

    Article  Google Scholar 

  • Yoshimura S, Nakamura M (2010) Chemically driven growth and resorption of bubbles in a multivolatile magmatic system. Chem Geol 276:18–28

    Article  Google Scholar 

  • Zhang Y, Ni H (2010) Diffusion of H, C, and O components in silicate melts. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts, vol 72. Mineralogical Society of America Reviews in Mineralogy, pp 171–225

  • Zhang Y, Stolper EM (1991) Water diffusion in a basaltic melt. Nature 351:306–309

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Aiuppa, A. Bertagnini, S. Calvari, M. Pompilio and M. Ripepe for fruitful discussions. Detailed and constructive reviews by R. Brooker, J. Lowenstern and an anonymous reviewer, and the editorial work of M. Schmidt, have considerably improved the presentation of this study. This project has been financially supported by INGV and DPC (Project Paroxysm), by the University of Palermo, the Observatoire pour les Sciences de l’Univers en Région Centre (OSUC) and is part of the VUELCO (EC FP7) and DEGAZMAG (ANR Blanc) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Pichavant.

Additional information

Communicated by M. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pichavant, M., Di Carlo, I., Rotolo, S.G. et al. Generation of CO2-rich melts during basalt magma ascent and degassing. Contrib Mineral Petrol 166, 545–561 (2013). https://doi.org/10.1007/s00410-013-0890-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0890-5

Keywords

Navigation