Skip to main content
Log in

Ground motion prediction in Beirut: a multi-step procedure coupling empirical Green’s functions, ground motion prediction equations and instrumental transfer functions

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The strike slip Yammouneh fault is the longest fault in Lebanon, crossing the territory from South to North. It was responsible for major historical earthquakes like the 1202 A.D. earthquake, estimated to Ms7.6. This paper presents a site-specific estimation of the ground motion caused by a potential Mw7.5 earthquake on the Yammouneh fault, similar to the 1202 event, for various sites within the Beirut area. The empirical Green’s function technique EGF is used to estimate the median and the standard deviations of the seismic ground motion at the reference station BHL, taking into account epistemic and aleatory uncertainties related to source parameters. These uncertainties were quantified through a sensitivity analysis of the position of the rupture nucleation Xnuc, the slip roughness parameter K, the corner frequency fc and the magnitude Mc of the EGF. The rock ground motion is then transferred to various other sites within the Beirut area, using instrumental Fourier transfer functions. Site amplification factors are next deduced by computing the ratio between response spectra at sediment sites and at a reference rock station. Considering the limits of the EGF method in the near field of extended sources, the EGF approach is considered only up to a magnitude Mw of 6.5. Selected Ground Motion Predictive Equations are then used to simulate a Mw7.5 event at a reference station. By applying the amplification factors, the response spectra at the different sites of Beirut are also calculated and compared with the actual response spectra used in the Lebanese regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abrahamson N, Silva W (2008) Summary of the Abrahamson & Silva NGA ground-motion relations. Earthq Spectra 24(1):67–97

    Article  Google Scholar 

  • Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72(4):1217–1231

    Article  Google Scholar 

  • Akkar S, Bommer J (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East. Seismol Res Lett 81(2):195–206

    Article  Google Scholar 

  • Allmann BP, Shearer PM (2009) Global variations of stress drop for moderate to large earthquakes. J Geophys Res. doi:10.1029/2008JB005821

    Google Scholar 

  • Ambraseys NN, Melville CP (1988) An analysis of the eastern Mediterranean earthquake of 20 May 1202. In: Lee WHK, Meyers H, Shimazaki K (eds) Historical seismograms and earthquakes of the world. Academic Press, San Diego, pp 181–200

    Google Scholar 

  • Bazzurro P, Cornell A (2004) Ground-motion amplification in nonlinear soil sites with uncertain properties. Bull Seismol Soc Am 94:2090–2109

    Article  Google Scholar 

  • Bernard P, Herrero A, Berge C (1996) Modeling directivity of heterogeneous earthquake ruptures. Bull Seismol Soc Am 86(4):1149–1160

    Google Scholar 

  • Bommer J (2006) Empirical ground-motion estimation: advances and issues. In: Proceedings of IAEE/IASPEI symposium on effects of surface geology on ground motion, Grenoble, France, 30 August–1 September

  • Bora SS, Scherbaum F, Kuhn N, Stafford P (2016) On the relationship between fourier and response spectra: implications for the adjustment of empirical ground-motion prediction equations (GMPEs). Bull Seismol Soc Am 106(3):1235–1253

    Article  Google Scholar 

  • Borcherdt RD (1994) Estimates of site-dependent response spectra for design (methodology and justification). Earthq Spectra 10(4):617–653

    Article  Google Scholar 

  • Bour M, Cara M (1997) Test of a simple empirical Green’s function method on moderate-sized earthquakes. Bull Seismol Soc Am 87(3):668–683

    Google Scholar 

  • Brax M (2013) Aléa et Microzonage Sismiques à Beyrouth. PhD thesis, Université de Grenoble

  • Brax M, Cornou C, Voisin C, Bard PY (2014) Mapping the fundamental frequencies in the city of beirut using ambient noise measurements. In: Second European conference on earthquake engineering and seismology, Istanbul, 24–29 August 2014, paper 868

  • Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009

    Article  Google Scholar 

  • Cadet H, Duval AM (2009) A shear wave velocity study based on the Kik-net borehole data: a short note. Seismol Res Lett 80(3):440–445

    Article  Google Scholar 

  • Candela T, Renard F, Bouchon M, Schmittbuhl J, Brodsky E (2012) Stress drop during earthquakes: effect of fault roughness scaling. Bull Seismol Soc Am 101:2369–2387

    Article  Google Scholar 

  • Causse M, Cotton F, Cornou C, Bard PY (2008) Calibrating median and uncertainty estimates for a practical use of empirical green’s functions technique. Bull Seismol Soc Am 98(1):344–353

    Article  Google Scholar 

  • Causse M, Chaljub E, Cotton F, Cornou C, Bard PY (2009) New approach for coupling k-2 and empirical Green functions: application to the blind prediction of broad-band ground motion in the Grenoble basin. Geophys J Int 179(3):1627–1644

    Article  Google Scholar 

  • Causse M, Cotton F, Mai PM (2010) Constraining the roughness degree of sip heterogeneity. J Geophys Res 115:B05304

    Article  Google Scholar 

  • Cauzzi C, Faccioli E (2008) Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records. J Seismol 12:453–475

    Article  Google Scholar 

  • Cotton F, Pousse G, Bonilla F, Scherbaum F (2008) On the discrepancy of recent European ground-motion observations and predictions from empirical models: analysis of KiK-net accelerometric data and point-sources stochastic simulations. Bull Seismol Soc Am 98(5):2244–2261

    Article  Google Scholar 

  • Cultrera G, Cirella A, Spagnuolo E, Herrero A, Tinti E (2010) Variability of kinematic source parameters and its implication on the choice of the design scenario. Bull Seismol Soc Am 100:941–953

    Article  Google Scholar 

  • Custodio S, Archuleta R (2007) Parkfield earthquakes: characteristic or complementary? Geophys Res Lett. doi:10.1029/2006JB004617

    Google Scholar 

  • Daëron M (2005) Rôle, cinématique et comportement sismique à long terme de la faille de Yammouoneh. PhD thesis, IPG-Paris

  • Daëron M, Klinger Y, Tapponnier P, Elias A, Jacques E, Sursock A (2005) Sources of the large A.D. 1202 and 1759 near east earthquakes. Geology 33(7):529–532

    Article  Google Scholar 

  • Daëron M, Klinger Y, Tapponnier P, Elias A, Jacques E, Sursock A (2007) 12,000-Year-long record of 10 to 13 paleoearthquakes on the Yammouneh fault, Levant fault system, Lebanon. Bull Seismol Soc Am 97(3):749–771

    Article  Google Scholar 

  • Douglas J, Akkar S, Ameri G, Bard PY, Bindi D, Bommer JJ, Bora SS, Cotton F, Derras B, Hermkes M, Kuehn NM, Luzi L, Massa M, Pacor F, Riggelsen C, Sandikkaya MA, Scherbaum F, Stafford PJ, Traversa P (2014) Comparisons among the five ground-motion models developed using RESORCE for the prediction of response spectral accelerations due to earthquakes in Europe and the Middle East. Bull Earthq Eng 12(1):341–358

    Article  Google Scholar 

  • Dubertret L (1945) Géologie du site de Beyrouth avec carte géologique au 1/20.000

  • Field EH, Johnson PA, Beresnev IA, Zeng Y (1997) Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake. Nature 390:599–602

    Article  Google Scholar 

  • Field EH, Zeng Y, Johnson PA, Beresnev IA (1998) Nonlinear sediment response during the 1994 Northridge earthquake: observations and finite source simulations. J Geophys Res Solid Earth 103(B11):26869–26883

    Article  Google Scholar 

  • Gallovic F, Brokesova J (2004) On strong ground motion synthesis with k-2 slip distributions. J Seismol 8:211–224

    Article  Google Scholar 

  • Gregor N, Abrahamson NA, Atkinson GM, Boore DM, Bozorgnia Y, Campbell KW, Chiou BSJ, Idriss IM, Kamai R, Seyhan E, Silva W, Stewart JP, Youngs R (2014) Comparison of NGA-West2 GMPEs. Earthq Spectra 30(3):1179–1197

    Article  Google Scholar 

  • Hartzell SH (1978) Earthquake aftershocks as Green’s functions. Geophys Res Lett 5(1):1–4

    Article  Google Scholar 

  • Herrero A, Bernard P (1994) A kinematic self-similar rupture process for earthquakes. Bull Seismol Soc Am 84(4):1216–1228

    Google Scholar 

  • Huijer C, Harajli M, Sadek S (2016) Re-evaluation and updating of the seismic hazard of Lebanon. J Seismol 20:233–250

    Article  Google Scholar 

  • IBC (2009) International building code IBC. International Code Council, INC, USA

  • Irikura K, Kamae K (1994) Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique. Annali di Geofisica XXXVII(6):1721–1743

    Google Scholar 

  • Kamai R, Abrahamson NA, Silva WJ (2014) Nonlinear horizontal site amplification for constraining the NGA-West 2 GMPEs. Earthq Spectra 30:1223–1240

    Article  Google Scholar 

  • Kohrs-Sansorny C, Courboulex F, Bour M, Deschamps A (2005) Method for ground-motion simulation using stochastic summation of small earthquakes. Bull Seismol Soc Am 95(4):1387–1400

    Article  Google Scholar 

  • Mai PM, Spudich P, Boatwright J (2005) Hypocenter locations in finite-source rupture models. Bull Seismol Soc Am 95(3):965–980

    Article  Google Scholar 

  • Mayeda K, Malagnini L (2010) Source radiation invariant property of local and near-regional shearwave coda: application to source scaling for the Mw 5.9 Wells, Nevada sequence. Geophys Res Lett 37:L07306. doi:10.1029/2009GL042148

    Article  Google Scholar 

  • McKay MD (1988) Uncertainty analysis, sensitivity and uncertainty analysis using a statistical sample of input values. CRC Press, Boca Raton

    Google Scholar 

  • McVerry G, Zhao J, Abrahamson N, Somerville P (2006) New Zealand acceleration response spectrum attenuation relations for crustal and subduction zone earthquakes. Bull N Z Soc Earthq Eng 39(1):1–58

    Google Scholar 

  • NL135 (2012) Protection from earthquakes: general rules. Lebanese Standards Institution LIBNOR, Lebanon

  • Pavic R, Koller M, Bard PY, Lacave-Lachet C (2000) Ground motion prediction with the empirical Green’s function technique: an assessment of uncertainties and confidence level. J Seismol 4:59–77

    Article  Google Scholar 

  • PS92 (1995) DTU Règles PS92, Règles de Construction Parasismique

  • Renault P (2014) Approach and challenges for the seismic hazard assessment of nuclear power plants: the Swiss experience. Bollettino di Geofisica Teorica ed Applicata 55(1):149–164

    Google Scholar 

  • Robinson EA (1954) Predictive decomposition of time series with applications to seismic exploration. PhD thesis, MIT

  • Robinson EA (1957) Predictive decomposition of seismic traces. Geophysics 22(4):767–778

    Article  Google Scholar 

  • Robinson EA (1967) Predictive decomposition of time series with application to seismic exploration. Geophysics 32(3):418–484

    Article  Google Scholar 

  • Sadek S, Harajli M, Asbahan R (2004) A GIS-based framework for the evaluation of seismic geo-hazards in the greater Beirut area. In: 11th international conference on soil dynamics and earthquake engineering and the 3rd international conference on earthquake geotechnical engineering, Berkley, CA, USA

  • Scherbaum F, Delavaud E, Riggelsen C (2009) Model selection in seismic hazard analysis: an information-theoretic perspective. Bull Seismol Soc Am 99(6):3234–3247

    Article  Google Scholar 

  • Seyhan E, Stewart JP (2014) Semi-empirical nonlinear site amplification from NGA-West 2 data and simulations. Earthq Spectra 30:1241–1256

    Article  Google Scholar 

  • UBC97 (1997) Uniform Building Code UBC 97. In: International conference of building officials, Whittier, California

  • Walling M, Silva WJ, Abrahamson NA (2008) Non-linear site amplification factors for constraining the NGA models. Earthq Spectra 24:243–255

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS Trans AGU 79:579

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the General Secretary of the Lebanese National Council for Scientific Research (CNRSL) M. Hamzé, the director of the geophysical research center (CRG-CNRSL) A. Sursock and all the team of the CRG especially R. Jomaa for their invaluable support. We wish to thank F. Cotton and S. Drouet for the advice and help in choosing the adequate GMPEs for the Lebanese context. This research has been funded by the Lebanese National Council for Scientific Research CNRSL, by Institut de la Recherche pour le Développement (IRD) and by Agence française pour la promotion de l’enseignement supérieur, l’accueil et la mobilité international (Campus France, Beyrouth). We thank G. Cultrera and two anonymous reviewers whose comments and suggestions helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marleine Brax.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brax, M., Causse, M. & Bard, PY. Ground motion prediction in Beirut: a multi-step procedure coupling empirical Green’s functions, ground motion prediction equations and instrumental transfer functions. Bull Earthquake Eng 14, 3317–3341 (2016). https://doi.org/10.1007/s10518-016-0004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-016-0004-7

Keywords

Navigation