Skip to main content
Log in

High-level ab initio calculation of the stability of mercury–thiolate complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reliability of ab initio methods to predict accurate thermodynamic properties and coordination geometries of mercury–thiolate complexes was examined with calculations at various levels of theory. The second-order Møller–Plesset perturbation theory (MP2) method in connection with the Stuttgart–Dresden–Bonn relativistic effective core potentials and the related correlation consistent valence basis set gives optimized Hg(RS) n model structures in good agreement with experimental data. Differences in thermodynamic stability among various models can be estimated with chemical precision using single-point energy calculation at the CCSD(T) level of theory performed on the MP2-optimized structures. This computational scheme was applied next to calculate the stability of aqueous linear (two coordinated), trigonal, and tetrahedral mercury–thiolate complexes. In alkaline solutions, the difference in complexation Gibbs free energy between the most stable (trigonal) and the less stable (tetrahedral) model complexes formed with free ligands is only −4.7 kcal mol−1. At neutral pH, the linear coordination is most stable. When the thiol ligands are structurally associated, as in biological systems, the trigonal coordination is most stable from pH 4.8 to 10.6. The relative stabilities of the three Hg–(RS) n bonding configurations reported herein can be further modified in biological environment by Hg-induced folding of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nomura A, Sugiura Y (2002) Contribution of individual zinc ligands to metal binding and peptide folding of zinc finger peptides. Inorg Chem 41:3693–3698

    Article  CAS  Google Scholar 

  2. Lachenmann MJ, Ladbury JE, Dong J, Huang K, Carey P, Weiss MA (2004) Why zinc fingers prefer zinc: ligand-field symmetry and the hidden thermodynamics of metal ion selectivity. Biochemistry 43:13910–13925

    Article  CAS  Google Scholar 

  3. Maret W, Valee BL (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95:3478–3482

    Article  CAS  Google Scholar 

  4. Rosenzweig AC (2002) Metallochaperones: bind and deliver. Chem Biol 9:673–677

    Article  CAS  Google Scholar 

  5. Robbins AH, McRee DE, Williamson M, Collett SA, Xuong NH, Furey WF, Wang BC, Stout CD (1991) Refined crystal structure of Cd, Zn metallothionein at 2.0 A resolution. J Mol Biol 221:1269–1293

    CAS  Google Scholar 

  6. Park JD, Liu Y, Klaassen CD (2001) Protective effect of metallothionein against the toxicity of cadmium and other metals(1). Toxicology 163:93–100

    Article  CAS  Google Scholar 

  7. Fleischer H (2005) Structural chemistry of complexes of (n − 1)d10nsm metal ions with β-N-donor substituted thiolate ligands (m = 0, 2). Coord Chem Rev 249:799–827

    Article  CAS  Google Scholar 

  8. Tang X-Y, Li H-X, Chen J-X, Ren Z-G, Lang J-P (2008) Synthetic and structural chemistry of groups 11 and 12 metal complexes of the zwitterionic ammonium thiolate ligands. Coord Chem Rev 252:2026–2049

    Article  CAS  Google Scholar 

  9. Jalilehvand F, Leung B, Izadifard M, Damian E (2006) Mercury(II) cysteine complexes in alkaline aqueous solution. Inorg Chem 45:66–73

    Article  CAS  Google Scholar 

  10. Mah V, Jalilehvand F (2008) Mercury(II) complex formation with glutathione in alkaline aqueous solution. J Biol Inorg Chem 13:541–553

    Article  CAS  Google Scholar 

  11. Schicht O, Freisinger E (2009) Spectroscopic characterization of Cicer arietinum metallothionein 1. Inorg Chim Acta 362:714–724

    Article  CAS  Google Scholar 

  12. Nagy KL, Manceau A, Gasper JD, Ryan JN, Aiken GR (2011) Metallothionein-like multinuclear clusters of mercury(II) and sulfur in peat. Environ Sci Technol 45:7298–7306

    Article  CAS  Google Scholar 

  13. Cremer D, Kraka E, Filatov M (2008) Bonding in mercury molecules described by the normalized elimination of the small component and coupled cluster theory. ChemPhysChem 9:2510–2521

    Article  CAS  Google Scholar 

  14. Filatov M, Cremer D (2004) Revision of the dissociation energies of mercury chalcogenides—unusual types of mercury bonding. ChemPhysChem 5:1547–1557

    Article  CAS  Google Scholar 

  15. Asaduzzaman A, Khan M, Schreckenbach G, Wang F (2010) Computational studies of structural, electronic, spectroscopic and thermodynamic properties of methyl-mercury amino acid complexes and their Se analogues. Inorg Chem 49:870–878

    Article  CAS  Google Scholar 

  16. Tossell JA (2001) Calculation of the structures, stabilities, and properties of mercury sulfide species in aqueous solution. J Phys Chem A 105:935–941

    Article  CAS  Google Scholar 

  17. Watts J, Howell E, Merle JK (2013) Theoretical studies of complexes between Hg(II) ions and l-cysteinate amino acids. Int J Quantum Chem. doi:10.1002/qua.24565

  18. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  19. Woon DE, Dunning TH Jr (1993) Gaussian basis sets for use in correlated molecular calculations. III. The second row atoms, Al–Ar. J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  20. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Energy-adjusted pseudopotentials for the second and third row transitions elements. Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  21. Lim IS, Schwerdtfeger P, Metz B, Stoll H (2005) All-electron and relativistic pseudopotential studies for the group 1 element polarizabilities from K to element 119. J Chem Phys 122:104103

    Article  CAS  Google Scholar 

  22. Martin JML, Sundermann A (2001) Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: the atoms Ga–Kr and In–Xe. J Chem Phys 114:3408–3420

    Article  CAS  Google Scholar 

  23. Pantazis DA, Chen X-Y, Landis CR, Neese F (2008) All-electron scalar relativistic basis sets for third-row transition metal atoms. J Chem Theory Comput 4:908–919

    Article  CAS  Google Scholar 

  24. Jansen G, Hess BA (1989) Revision of the Douglas–Kroll transformation. Phys Rev A 39:6016–6017

    Article  Google Scholar 

  25. Douglas H, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Ann Phys 82:89–155

    Article  CAS  Google Scholar 

  26. Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748

    Article  CAS  Google Scholar 

  27. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622

    Article  Google Scholar 

  28. Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  29. Raghavachari K, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100

    Article  Google Scholar 

  30. Scuseria GE, Janssen CL, Schaefer HF III (1988) An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations. J Chem Phys 89:7382–7387

    Article  CAS  Google Scholar 

  31. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  32. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  33. Watts JD, Gauss J, Bartlett RJ (1993) Coupled-cluster methods with non-iterative triple excitations for restricted open-shell Hartree–Fock and other general single-determinant reference functions. Energies and analytical gradients. J Chem Phys 98:8718–8733

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT

  35. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–557

    Article  CAS  Google Scholar 

  36. Manceau A, Nagy KL (2008) Relationships between Hg(II)-S bond distance and Hg(II) coordination in thiolates. Dalton Trans 11:1421–1425

    Article  CAS  Google Scholar 

  37. Kelly CP, Cramer CJ, Truhlar DG (2006) Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J Phys Chem B 110:16066–16081

    Article  CAS  Google Scholar 

  38. Lennie A, Charnock J, Pattrick R (2003) Structure of mercury(II)-sulfur complexes by EXAFS spectroscopic measurements. Chem Geol 199:199–207

    Article  CAS  Google Scholar 

  39. Mah V, Jalilehvand F (2010) Glutathione complex formation with mercury(II) in aqueous solution at physiological pH. Chem Res Toxicol 23:1815–1823

    Article  CAS  Google Scholar 

  40. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5-Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995–2999

    Article  CAS  Google Scholar 

  41. Svensson M, Humbel S, Morokuma K (1996) Energetics using the single point IMOMO (integrated molecular orbital molecular orbital) calculations: choices of computational levels and model system. J Chem Phys 105:3654–3661

    Article  CAS  Google Scholar 

  42. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J Mol Struct (Theochem) 462:1–21

    Article  Google Scholar 

  43. Shoukry MM, Cheesman BV, Rabenstein DL (1988) Polarimetric and nuclear magnetic resonance studies of the complexation of mercury by thiols. Can J Chem 66:3184–3189

    Article  CAS  Google Scholar 

  44. Ghosh D, Lee K-H, Demeler B, Pecoraro VL (2005) Linear free-energy analysis of mercury(II) and cadmium(II) binding to three-stranded coiled coils. Biochem 44:10732–10740

    Article  CAS  Google Scholar 

  45. Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  46. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  47. Wernimont AK, Huffman DL, Lamb AL, O’Halloran TV, Rosenzweig AC (2000) Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol 7:766–771

    Article  CAS  Google Scholar 

  48. Helmann JD, Ballard BT, Walsh CT (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247:946–948

    Article  CAS  Google Scholar 

  49. Watton SP, Wright JG, MacDonnell FM, Bryson JW, Sabat M, O’Halloran TV (1990) Trigonal mercuric complex of an aliphatic thiolate: a spectroscopic and structural model for the receptor site in the Hg(II) biosensor MerR. J Am Chem Soc 112:2824–2826

    Article  CAS  Google Scholar 

  50. Hasnain SS (1988) Application of EXAFS to biochemical systems. Top Curr Chem 147:73–93

    Article  CAS  Google Scholar 

  51. Jiang DT, Heald SM, Sham TK, Stillman MJ (1994) Structures of the cadmium, mercury, and zinc thiolate clusters in metallothionein: XAFS study of Zn7-MT, Cd7-MT, Hg7-MT, and Hg18-MT formed from rabbit liver metallothionein 2. J Am Chem Soc 116:11004–11013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Isabelle Gautier-Luneau and Cyprien Lemouchi for fruitful discussions. This work was supported by the “Programme Blanc” of the French National Science Foundation (ANR) under Grant ANR-12-BS06-0008-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mironel Enescu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2014_1457_MOESM1_ESM.doc

Online resources: ESM_1.doc contains the Gaussian 09 input files and the optimized structures of the mercury–thiolate and mercury–cysteine complexes. (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enescu, M., Manceau, A. High-level ab initio calculation of the stability of mercury–thiolate complexes. Theor Chem Acc 133, 1457 (2014). https://doi.org/10.1007/s00214-014-1457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1457-x

Keywords

Navigation